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Preface

The application of formal methods to security protocol analysis has attracted
increasing attention in the past two decades, and recently has been show-
ing signs of new maturity and consolidation. The development of these formal
methods is motivated by the hostile nature of some aspects of the network and
the persistent efforts of intruders, and has been widely discussed among re-
searchers in this field. Contributions to the investigation of novel and efficient
ideas and techniques have been made through some important conferences
and journals, such as ESORICS, CSFW and ACM Transactions in Computer
Systems. Thus, formal methods have played an important role in a variety of
applications such as discrete system analysis for cryptographic protocols, be-
lief logics and state exploration tools. A complicated security protocol can be
abstracted as a manipulation of symbols and structures composed by symbols.
The analysis of e-commerce (electronic commerce) protocols is a particular
case of such symbol systems.

There have been considerable efforts in developing a number of tools for
ensuring the security of protocols, both specialized and general-purpose, such
as belief logic and process algebras. The application of formal methods starts
with the analysis of key-distribution protocols for communication between
two principals at an early stage. With the performance of transactions be-
coming more and more dependent on computer networks, and cryptography
becoming more widely deployed, the type of application becomes more varied
and complicated. The emerging complex network-based transactions such as
financial transactions and secure group communication have not only brought
innovations to the current business practice, but they also pose a big challenge
to protect the information transmitted over the open network from malicious
attacks. However, there has been no specialized monograph to consider these
issues. Thus this book takes these interesting topics into account and offers in-
novative techniques for modelling e-commerce protocol, analyzing transaction
data and testing the protocol performance in an intuitive way.



VI Preface

The present volume arose from a need for a comprehensive collection pre-
senting the state of the art in security protocol analysis, and is aimed at serving
as an overall course-aid and self-study material for researchers and students
in formal methods theory and applications in e-commerce, data analysis and
data mining. However, the volume can be useful to anyone else who is inter-
ested in secure e-commerce.

This book is organized into eight chapters that cover the main approaches
and tools in formal methods for security protocol analysis. Having in mind
that the book is also addressed to students, the contributors present the main
results and techniques in an easily accessed and understood way together with
many references and examples.

Chapter 1 is an introductory chapter that presents the fundamentals and
background knowledge with respect to formal methods and security proto-
col analysis. Chapter 2 provides an overview of related work in this area,
including basic concepts and terminology. Chapters 3 and 4 show a logical
framework and a model checker especially for analyzing secure transaction
protocols. Chapter 5 explains how to deal with uncertainty issues in secure
messages, including inconsistent messages and conflicting beliefs in messages.
Chapter 6 integrates data mining with security protocol analysis, and Chap. 7
develops a new technique for detecting collusion attack in security protocols.
Chapter 8 presents a summary of the chapters and gives a brief discussion of
some emerging issues.

Although it is not easy to cover all the relevant studies in this book, due
to varied formal methods and increasingly complicated security protocols, we
hope that it is comprehensive enough to provide a useful and handy guide for
both beginners and experienced researchers.

We would like to express our sincere thanks to all colleagues who provided
us with useful comments and support during our writing of this book. These
include Yi-Ping Phone Chen and Zili Zhang from Deakin University, Li Liu
from the University of Technology Sydney, Jeffrey Xu Yu from the Chinese
University of Hong Kong, Shuo Bai from the Institute of Computing Technol-
ogy of the Chinese Academy of Sciences, Xiaowei Yan from Guangxi Normal
University and Kaile Su from Sun Yat-Sen University.

We also wish to especially thank Alfred Hofmann, Editor at Springer, for
his enthusiasm, patience and great efforts in publishing this book, as well as
his staff for their conscientious efforts of providing materials. We are very
grateful to all of the reviewers for their useful and valuable feedback. We also
thank our families for their persistent support throughout this project.

This work was partially supported by an Australian large ARC grant
(DP0667060), a China NSF major research Program (60496327), a National
Natural Science Fund for Distinguished Young Scholars of China under
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Grant No. 60625204, a China NSF grant (90718020), a China 973 Program
(2008CB317108), an Overseas-Returning High-level Talent Research Program
of China Ministry of Personnel, and Guangxi NSF grants.

April 2008 Qingfeng Chen
Chengqi Zhang
Shichao Zhang
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1

Introduction

Security protocols (cryptographic protocol) have been widely used to not only
achieve traditional goals of data confidentiality, integrity and authentication,
but also secure a variety of other desired characteristics of computer-mediated
transactions recently. To guarantee reliable protocols, a great deal of formal
methods has been undertaken not only to develop diverse tools with special-
ized purpose or general purpose, but also to apply them to the analysis of
realistic protocols. Many of them have been proved to be useful in detecting
some intuitive attacks in security protocols. In many cases, a useful feedback is
supplied to designers in order to improve the protocol’s security. For both be-
ginners and experienced researchers, this book will present useful information
on relevant technologies that can be extended or adapted. A comprehensive
introduction to the basic concepts and core techniques will be presented. In
this chapter, we explain what is security protocols and how they can be used
to ensure secure transactions, what challenging issues in e-commerce (elec-
tronic commerce) are, why security protocol analysis important, how they are
performed, and what are the ongoing efforts and relevant work. We will also
explain the limitations in previous work and why it is important to develop
new approaches. These questions will be briefly answered. In particular, we
will focus on the discussion regarding secure transaction protocols. Finally,
some emerging issues and the ways they are being met are also described.

1.1 What Is Security Protocol?

First, let us consider a financial transaction that is to send sensitive data such
as Alice’s credit card numbers to a vendor like Dell Inc. Several occurring
matters in this transaction are listed below.

• credit card number, ID
• encrypted credit card number, no ID
• encrypted credit card number, ID

Q. Chen, C. Zhang, S. Zhang: Secure Transaction Protocol Analysis, LNCS 5111, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 1 Introduction

The first case provides no encryption protection to the credit card number. An
intruder can see the credit card number and masquerade as Alice to proceed
the transaction using the ID. The credit card number is encrypted in the
second case, whereas the vendor cannot authenticate the sender’s identifier
that might be missing, intercepted or tampered by malicious hackers. Only
the last case may be safe since it encodes the credit card number and includes
the ID.

In the past few years, researchers have sought to develop techniques for
information security. One of the most effective and popular ways is the appli-
cation of security protocols. A security protocol is a sequence of operations
that perform a security-related function by using cryptographic methods. A
protocol specifies how the cryptography should be used, and includes details
about data structures and representations. For example, it is not easy for the
intruder to see Alice’s credit card number without the right key.

There are a variety of protocols for different purposes, such as communica-
tion protocols. File transfer protocol (FTP) that is a protocol to describe file
transfers between a host and a remote computer; hypertext transfer protocol
(HTTP) is the set of rules for exchanging files (text, audio, video, and other
multimedia files) on the World Wide Web; and electronic transaction proto-
cols for secure e-commerce. Usually, a security protocol has to incorporate
some of the following aspects to ensure secure data transport.

• Entity authentication. This means the authentication of principals, by
which to ensure users are who they say they are. One familiar example
is access control. A computer system supposed to be used only by those
authorized must attempt to detect and exclude the unauthorized.

• Key agreement or establishment. This is to make two or more parties agree
on a session key.

• Encryption construction. This is the process of converting information to
make it unreadable without special knowledge. It has been widely used
to protect communications. Although encryption can be used to ensure
secrecy, other techniques are still needed to verify the integrity and au-
thenticity of a messages.

• Secure data transport. This provides secure communication on the dis-
tributed systems in combination with various cryptographic mechanisms,
such as public-key (asymmetric) cryptography, symmetric ciphers, one-way
hash functions and so on. Furthermore, some new devices like timestamps
and key-sharing are also used recently. We will give explanation to the
above concepts in the next section.

Secure transaction protocol (e-commerce protocol) [55, 140] is one of the im-
portant security protocols, and has been mainly developed to secure financial
transactions. It specifies transaction rules that must be conformed in each
processing phase. To complete a transaction, for example, Alice needs to ob-
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tain a valid credit card number from a authorized financial institute, have the
correct PIN to access the credit card, sends the encrypted credit card num-
ber along with relevant information such as identifier to the vendor; and the
vendor must decrypt the message and send a response message to Alice to
confirm the transaction.

With the rapid growth of online trading, the reliability of e-commerce pro-
tocols has received a great deal of attention. This book aims to present some
innovative techniques for secure transaction protocol analysis. It considers
the characteristic of financial transactions and focuses on building models for
examining and evaluating the protocol performance using transaction data.

1.2 Needs of Formal Analysis for Secure Transaction
Protocols

Most internet users may have experiences of buying products online such as
shares, computers or foods, or transferring money by using internet bank-
ing. It is natural that they might be concerned about revealing their credit
card numbers, personal details, or receiving wrong products. In other words,
people wonder the transaction may be unsecured. The development of formal
methods owes much to the security community. A number of formal secu-
rity models, tools for reasoning about security, and applications of these tools
to proving systems secure were developed in the 1970s and early 1980s. The
wide use of the internet brings these security problems to the attention of the
masses.

The emergence of e-commerce has caused innovation in current business
practice, and has broken through conventional marketing barriers, as activities
on the internet are no longer limited to time and geography. Unlike conven-
tional business, the development of e-commerce is unprecedented. There has
been a vast growth in retail e-commerce and in transactional use by small
business. The following industry forecast should be sufficient to indicate the
dynamic growth and potential of electronic commerce:

Forrester forecasts that the world total e-commerce (B2B and B2C) has
been expected to reach 2.3 trillion by 2002 and to be on track to reach
13 trillion by 2006. The compound annual growth rate is around 53.6 per
cent [73].

Furthermore, e-commerce improves the efficiency of existing business models
and enables the transformation of these models, which present reduced costs
and increasing competitiveness, as well as bring new challenges. This has
resulted in the development of a great many e-commerce systems. With the
development of e-commerce systems, their security has become a key issue. For
example, people may hesitate to send their credit card number or date of birth
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to an electronic transaction system when asked for it on-line. The vendor must
be able to provide adequate protection from fraud and violation of privacy
when trading on the Web. Currently, consumers can find a great variety of
systems offered by vendors on the Internet, but secure payment capability has
not been guaranteed. It is thus a high-profile problem for e-commerce systems
to protect the information transmitted over the open network from malicious
attacks.

In general, security in e-commerce is implemented by relying on a set
of secure protocols that meet the user’s expectation for secure transactions.
However, existing security protocols are not always secure enough to meet
people’s expectation. Besides, the design of a security protocol is difficult and
error-prone. In particular, some subtle flaws have been recognized in popular
and widely-used security protocols. This generates a crucial requirement of
identifying weakness and hidden flaws in security protocols.

The traditional ways of verifying security protocols are through human
inspection, simulation, and testing. Unfortunately these approaches provide no
guarantees about the quality of security protocols. Formal methods comprise a
variety of mathematical modelling techniques for specifying and modelling the
behaviour of a system, and may mathematically verify that the system design
and implementation satisfy system functional and safety properties. One of the
main applications of formal methods is to assist in security protocol analysis.
Formal methods allow us to

• Specify the system’s boundary: the interface between the system and its
environment.

• Characterize a system’s behaviour more precisely in handling both func-
tional behaviour and real-time behaviour by a mathematical or logical
model.

• Provide precise definition for the system’s desired properties by formulat-
ing its requirements.

• Implement a thorough analysis of different paths which an intruder can
utilize.

• Prove a system meets its specification by rigorous proofs. Some methods
may offer counterexamples if it is not the case.

Clarke and Wing capture the three threads in the development of formal meth-
ods in their paper for 1996 ACM Computing Surveys [37]-model checking,
theorem proving, and software specification. Model checking, in particular, is
a proven success for hardware verification; companies such as Intel are estab-
lishing their own hardware verification groups, building their own verification
systems, and hiring people trained in formal methods.

As more and more transactions are carried out via computer networks,
however, and as cryptography is widely applied, the types of applications in
which the security protocols need to be integrated becomes more varied and
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complex. As Meadows indicated [112], some emerging issues and trends with
respect to formal analysis for security protocols require us to develop new ap-
proaches that must take these issues into account. Most previous approaches
have concentrated on formulating security problems in terms of the properties
of a discrete problem such as intercepting data, concatenating and deconcate-
nating data, and encrypting and decrypting data. The field has now reached
a state in which there are many different tools available that can be used to
verify various security properties of security protocols.

Some recent trends in security protocols present new challenges to protocol
analysis. As computer networks become more widespread, and more transac-
tions are handled in a potentially hostile environment, the security protocols
become more complex and varied. This makes protocol analysis more difficult.
Most existing protocol analysis systems use a very simple model of encryp-
tion but cannot handle the modelling of properties possessing many current
algorithms. On the other hand, some new types of threats such as denial of
service and traffic analysis, and new applications such as financial transac-
tions, require us to take these new issues into account when attempting to
develop approaches to assure correctness of security protocols.

1.3 Formal Methods and Related Areas

Formal methods have been widely used in security protocol analysis since
the 1980s. Regardless of the various classifications of formal methods in the
relevant literature, formal methods are classified into theorem proving, model
checking and formal logics in this book according to the usual definition.

Theorem proving uses higher-order logic to reason about possible pro-
tocol executions by constituting a compelling proof that a particular property
always holds. These logics are not subject to finite bounds, and provide mech-
anized proofs, including automated tools and proof checking, which can assist
in parts of proofs and prevent errors in reasoning.

An inductive proof starts with defining a set of traces. Given a protocol,
a trace is one possible sequence of events, such as attacks. It aims to prove
correction of protocols by induction and confirm whether a particular descrip-
tion of a protocol meets a particular property. In other words, for every state
in every trace, it is able to prove that no security condition fails. This is true
even when the system can engage in arbitrarily interleaved runs of the pro-
tocol, when the space of facts is infinite, and when the number of users is
unbounded. To check with the secrecy and authentication properties, it fo-
cuses on the fact that certain messages should not occur, or should occur only
in specific situations. Usually, we are more concerned with offering theories
for establishing the impossibility of a collection of particular events.
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The counter-example form of induction is widely used in generating
counter-examples. In this case, a theorem prover may be terminated when
any valid theorem can eventually be proven.

Alternatively, they may find a counter-example in the process. Various
proof search strategies are used, often based on the basic resolution strategy
proposed by Robinson [133]. Inductive theorem proving, as in [111], can be
general, but requires time-consuming interactive theorem proving by experi-
enced researchers.

The following four safety properties are all goals needed to be achieved in
all security protocols.

• Authenticity is to confirm who sent a message. If principal A receives a
message from B but thinks it is from C, the proof fails.

• Integrity is to check whether a message has been altered. If A receives a
message from B but this message is different from what B sent, the proof
fails.

• Secrecy is to ensure that only the valid principals can receive the message.
If an intruder knows a message that should be kept secret from him/her,
the proof fails.

• Anonymity is to make the principals’ actions unknown from the intruders.
If an intruder or principal B knows an action is performed by A, the proof
fails.

Great efforts have been devoted to developing induction approaches for secu-
rity protocol analysis. One remarkable work is Isabelle [124] theorem prover by
Paulson. It supports proof development including high-order logic and generic
treatment of inference rules.

Model checking is a method to formally verify a finite-state concurrent
system. The specification of the system is often written as temporal logic
formulas, and efficient symbolic algorithms are used to traverse the model
defined by the system. The verification is achieved by checking if the formal
specification can be satisfied by the model.

The model is usually expressed as a transition system, i.e a directed graph
consisting of nodes (or vertices) and edges. A collection of atomic propositions
is associated with each node. The nodes denote states of a system, the edges
denote possible executions which alter the state, while the atomic propositions
denote the basic properties that hold at a point of execution.

Formally, a problem can be stated in terms of the following steps: given a
desired property (modelling), expressed as a temporal logic formula p (specifi-
cation), and a model M with initial state s, decide if M s |= p (verification).
Modelling converts the system into a formalism using a state transition graph
such as Kripke structure. It may sometimes require the use of abstraction due
to the limitations of time and memory. For example, a Kripke structure can
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be represented by a set of atomic propositions (AP), which is quadruple, M
= (S, S0, R, L) where

• S represents a finite set of states.
• S0 represents the set of initial states, S0 ⊆ S.
• R ⊆ S × S represents a transition relation.
• L: S → {AP} represents a function that labels each state with the set of

atomic propositions in this state.

Specification uses some operators in temporal logic to describe the system. For
example, X for ‘next time’, F for ‘in the future’, G for ‘globally’, U for ‘until’,
and R for ‘release’. Also two quantifiers can be used, including A for ‘always’
and E for ‘exists’. There are two main specification languages to represent
temporal logic, including CTL (Computation Tree Logic) and LTL (Linear
Temporal Logic).

The verification aims to check whether the final system satisfies an ex-
pected property (called specification). The model checking tool outputs yes
if the given model satisfies the given specification and generates a counter-
example otherwise. The counterexample explains why the model does not
satisfy the specification. By studying the counterexample, we can know the
source of the error, which is able to provide useful information for us to find
a solution to the problem. Nevertheless, model checking tools face the state
explosion problem. A number of studies such as symbolic algorithms, partial
order reduction, abstraction and on the fly model checking have been devel-
oped in order to cope with this problem.

Recently, many state exploration tools based on the Dolev-Yao model have
been developed for security protocol analysis owing to Lowe’s demonstration
that it was possible to use a general-purpose model checker, FDR, to detect a
man-in-the-middle attack on the Needham-Schroeder public key protocol [97].
Most of the succeeding work applied both model checking and theorem prov-
ing to the problem, as well as in the design of special-purpose model checkers.
On the other hand, there have also been studies showing under what circum-
stances checking a finite number of states might be sufficient.

Formal logic is one of the critical tools in formal methods. For example,
temporal logics play an important role in model checking. Formal logic focuses
on the study of inference with a set of rules for making deductions that are
made explicit. It formalizes such deductions with precise rules to decide if an
argument is valid. This can be achieved by representing objects and relation-
ships symbolically including the quantifiers and logical connectives such as ∃,
∀, ∨, ∧, ⇁, and →.

Formal logic encompasses a wide variety of logical systems, such as term
logic, predicate logic and modal logic, and formal systems are indispensable in
all branches of formal methods. The Burrows, Abadi and Needham (BAN) [22]
logic is a representative belief logic, which consists of a set of modal operators
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describing the relationship of principals to data, a set of possible beliefs about
important components (such as a belief that a message was encrypted by a
certain principal’s public key) and properties (such as freshness that a message
is not reused or replayed) of protocols that can be hold by principals, and a set
of inference rules that define the semantics of BAN logic and is able to derive
new beliefs from old ones. An example would be a rule saying that if A believes
that a message m is fresh, and that B once said m, then A believes that B
believes m in the current run of the protocol. BAN logic provided an intuitive
and simple set of rules, and was successfully used to detect subtle flaws in
protocols [2]. Consequently, the logic results in a number of other logics that
extend or adapt it to different types of problems in cryptographic protocols.
Although belief logics are usually weaker in comparison with state exploration
tools owing to a much higher level of abstraction, they are decidable, efficiently
computable, and even completely automated [18].

Temporal logic represents and reasons about temporal information within
a logical framework, and is usually used to define the semantics of temporal
expressions in natural language. Consider the statement: ‘A sends a message
m to B ’. Although its literal meaning is constant in time, the truth value that
can vary in time. Sometimes the statement is true, and sometimes the state-
ment is false. In a temporal logic, statements can have a truth value which
can vary in time. The three basic temporal operators are always, sometimes,
and never. Computational tree logic (CTL), Linear temporal logic (LTL) and
Interval temporal logic (ITL) are examples of temporal logics. Computational
tree logic (CTL) is a temporal logic. It is often used to express properties of
a system in the context of formal verification or model checking. CTL uses
atomic propositions to make statements about the states of a system, which
are then combined into formulas using logical operators and temporal oper-
ators. LTL logic is a modal temporal logic with modalities referring to time,
by which one can encode formulae about the future of paths by propositional
variables, logical connectives, and temporal modal operators. ITL logic is a
temporal logic for representing both propositional and first-order logical rea-
soning about periods of time, which is capable of handling both sequential
and parallel composition.

There are a number of international computer security conferences and
journals that publish high quality papers in security areas. A brief list (in our
opinion only) is described below for your reference in terms of the accepted
paper quality and impact.

Top-ranked conferences:

• IEEE Symposium on Security and Privacy. Since 1980, it has been
the premier forum for the presentation of developments in computer se-
curity and electronic privacy, and for bringing together researchers and
practitioners in the field. Papers offer novel research contributions in any
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aspect of computer security or electronic privacy. Papers include advances
in the theory, design, implementation, analysis, or empirical evaluation of
secure systems, either for general use or for specific application domains.

• ACM Conference on Computer and Communications Security.
Since 1993, the conference seeks submissions from academia and industry
presenting novel research on all theoretical and practical aspects of com-
puter security, as well as case studies and implementation experiences.
Practical papers have practical relevance to the construction, evaluation,
application, or operation of secure systems. Theoretical papers make con-
vincing argument for the practical significance of the results.

• International Cryptology Conference. Since 1995, the International
Association for Cryptologic Research has sponsored the annual Crypto-
logic Research (Crypto) and European Cryptologic Research( Eurocrypt)
conferences. Since 2000, it has also sponsored the annual Asian Crypto-
logic Research (Asiacrypt) conference. Their purpose is to further research
in cryptology and related fields.

• USENIX Security Symposium. Since 1993, the conference brings to-
gether researchers, practitioners, system administrators, system program-
mers, and others interested in the latest advances in the security of com-
puter systems and networks. It includes the papers covering novel and
scientifically significant practical works in security or applied cryptogra-
phy.

Top-ranked journals:

• ACM Transactions on Information and System Security. It in-
cludes three top of interests. Security Technologies such as authentication;
authorization models and mechanisms; auditing and intrusion detection;
cryptographic algorithms, protocols, services, and infrastructure; crypt-
analysis and formal methods; and secure systems. Security Applications
such as threats, system tradeoffs, representative application areas include
information systems, workflow, electronic commerce, and telecommunica-
tions systems. Security Policies such as confidentiality, integrity, availabil-
ity and privacy policies.

• Computers & Security. It aims to provide a combination of leading
edge research developments, innovations and sound practical management
advice for the professionals involved with computer security, audit, control
and data integrity in all sectors - industry, commerce and academia.

• Journal of Cryptography. It is the official journal of the International
Association for Cryptologic Research. This journal covers cryptography
and cryptanalysis, including information theoretic and complexity the-
oretic perspectives, and also includes public key and conventional algo-
rithms and their implementations, and computational number theory and
cryptographic protocols.
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• Designs, Codes and Cryptography. There is a great deal of activity
in design theory, coding theory and cryptography. This journal provides a
forum for high quality papers of both a theoretical and a practical nature
which bridge more than one of these subjects.

1.4 Emerging Issues and Trends

As more and more transactions such as financial transactions by e-commerce
system are performed electronically on open networks, and as more and more
sensitive and confidential messages must be transmitted in some manner, the
concerns over information security challenge us and attract more and more
attention.

As network-based electronic transactions become more and more preva-
lent, the types of transaction become more varied and complicated. For exam-
ple, financial transactions depend on properties such as freshness and fairness
as well as security properties protected by traditional security services. These
include secure group communication, in which a key must be kept secret as
members can join or leave, and negotiation of data structure such as security
association rather than keys. Furthermore, the new types of threats, such as
collusion attacks, denial of services and traffic analysis, become more implicit
and dangerous. We have to be concerned not only about the external threats
that may attempt to break the protection of secrets or impersonate the honest
principals, but the internal threats that may attempt to gain unauthorized
access to the secrets by collusion with a number of dishonest principals. The
primary emerging issues and trends are described below.

• Increasing complexity: As networks become more widespread and han-
dle more and more transactions in a hostile environment, security proto-
cols play a central role in guaranteeing secure transactions. The properties
they are supposed to satisfy are diverse in different cases. In a protocol
with respect to financial transactions, the liveness and fairness are what
it mainly wants to achieve; but in a protocol regarding secure group com-
munication, a key is required to remain secret within a group no matter
how many members may join or leave. The varied and complex types of
application increase the complexity of protocols. For example, the Internet
Key Exchange (IKE) protocol needs not only to set up a shared session
key, but also to specify the algorithms that use this key. Also, the SET
protocol must be able to process various payment card transactions over
open networks. We have to increase the complexity of protocols to cope
with this challenge. It will certainly make the analysis of protocols more
difficult. However, faced with these unavoidable facts, we have to meet
them when attempting to perform analysis of such security protocols.
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• New types of cryptography: Ideally, the cryptographic algorithms are
assumed to be reliably secure. However, with the increasing computational
power, some algorithms that were believed to be secure have been viewed
as no longer guaranteeing sufficient security, such as DES. Furthermore,
many of the new algorithms include a number of properties that cannot
be modelled by existing analysis methods. Many of them use a simple
model to abstract the encryption and decryption, authentication, and so
forth. However, other algorithms and data structures consists of new desir-
able properties, such as anonymity in group key management protocols, as
in [26], and the timestamp used in TESLA protocol to provide multicast
packet authentication.

• New applications and new threats: In traditional computer security,
the focus has been on hypothetical threats where there would be an ob-
vious profit for the intruders, such as reused or replayed message. With
the introduction of new security protocols, a number of new threats have
emerged recently. They have properties that are somewhat different from
conventional attacks, and cannot be modelled by traditional methods like
the Dolev-Yao model. Many security protocols are subject to denial-of-
service attacks [112], in which the attackers initiate a protocol run and then
cast off it, leaving a responder committing its resources to maintaining the
connection with the initiator. This may cause the responder to waste re-
sources in maintaining the communication between them, and eventually
using up all of its available resources. Therefore, some approaches have
been taken to resolve this problem by comparing the resources expended
by an initiator (defender) to the resources expended by an attacker [81].
Anonymous communication has recently been introduced because users
are concerned about the dangers of traffic analysis that may reveal their
individual information over the open network. Actually, even when en-
cryption is applied, it is not easy to hide the source and destination of
message traffic, from which an attacker can learn much about the com-
munication secrecy using statistical analysis that depends on correlation
of data. Thus, many systems, such as Onion Router, are designed to pre-
vent the attacker from determining the source and destination of requests.
However, they lack sufficient ability to measure the degrees of protection
provided by these systems.
There are also some tools that combine the formal methods and statis-
tical techniques. Electronic transactions in electronic commerce include
new security properties such as fairness and liveness. However, unlike the
safety properties in conventional cryptographic protocols, the desirable
properties of electronic commerce protocols cannot be expressed directly
using tools designed for checking safety properties. Fortunately, we have
seen inspiring efforts in this area. Most work on the application of formal
methods to security protocol analysis has focused on the explicit attacks



12 1 Introduction

from external but has paid less attention to the potential or hidden attacks
from internal sources. A hostile intruder may intercept, modify, or delete
messages, and even handle covert attacks in collusion with a certain num-
ber of dishonest principals. For example, suppose principals A, B and C
know message (m1), (m1, m2) and (m3), respectively. Usually, they should
know their individual messages only. Nevertheless, existing protocols do
not consider that A, B and C may collude to disclose the messages to
an intruder Z. The attack is covert and is not apparent even to careful
inspection. Therefore, the new types of threats are more dangerous than
traditional attacks.

1.5 A Brief Discussion on the Chapters

The aforementioned issues owing to the complexity and diversity of security
protocols make people become more concerned about the security of electronic
transactions. Thus, this book focuses on discussing effective and innovative
methods by modelling transaction systems, analysing transaction data and
evaluating protocol performance. Chapter 2 gives an overview of other related
works, which include the fundamentals of cryptography, the traditional formal
methods, security protocols, and existing verification systems. Furthermore,
several considerations are listed below.

New properties of financial transactions. The complexity of secu-
rity protocols makes the analysis of security protocols become a difficult and
error-prone task. They consist of a number of extremely subtle properties,
such as freshness in a financial transaction. Even a simple concept of en-
cryption may consist of various specific approaches such as RSA and DES.
For example, the vendor may want to confirm that the buyers’s credit card
number is encrypted by a fresh key rather than an expired key. The precise
meaning of this notion must be discussed and made clear. Most work on for-
mal analysis of security protocols focused on verifying properties that can be
expressed according to conditions on system traces. To express the properties
of e-commerce protocols, Chapter 3 described a formal logic, namely ENDL
(extended non-monotonic dynamic logic), including the fundamental nota-
tions, axioms, theorems and inference rules. Moreover, Chapter 4 presents
an ENDL-based verification model, including the inference engine and the
knowledge base, to enable an automatic way for protocol analysis. It is usu-
ally designed to analyse the approximation of the safety properties.

Uncertainty issues that consist of inconsistent data problem and in-
consistent belief problem. Inconsistent transaction data. The transaction
data transmitted between principals may be inconsistent with each other. For
example, Alice might send her credit card number to the vendor, whereas
the vendor may receive a tampered credit card number or receive nothing at
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all. Such inconsistency between transaction data of different principals may
imply potential flaws of protocols. Chapter 5 presents the inconsistency issues
in secure messages and aims to enhance the protocol analysis by measuring
the degree of inconsistency. Inconsistent belief in transmitted messages.
Traditional protocol analysis assumes that the principals and communication
channel are trusted but usually fail to model insecurity. For example, Alice
believes that a key has a 95% probability to be true, and Bob believes that it
is true in a 75% probability only. Unfortunately, the previous methods cannot
model the imperfect working conditions and verifying the protocol in hostile
circumstances. Chapter 5 describes the inconsistent belief in secure messages
and shows how to integrate conflicting beliefs.

Hidden associations between secure messages. No matter what se-
curity flaws occur in security protocols, they may result in inconsistent trans-
action data. However, the transmitted messages are not independent but cor-
related with each other. For example, a PIN number is related to a credit card
number and an encryption key has relation to its corresponding decryption
key. If a set of secure messages are highly inconsistent between principals,
the frequency of the itemset should be low. It is reasonable to suspect the
protocol performance. Thus, this makes it possible to detect security flaws
from protocols using advanced data mining techniques. Chapter 6 shows how
to apply data mining techniques to assist in verifying security protocols, in
which it presents the conversion between secure messages and items.

Collusion attacks by a group of dishonest principals. An attack
cannot be performed by an individual, whereas it may be proceeded by a
group of dishonest principals. For example, the intruder can obtain Alice’s
credit card number and the PIN number from the vendor and the issuer,
respectively. Unfortunately, this threat cannot be modelled by current meth-
ods. The potential correlations between transmitted secure messages that are
shared by multiple principals provide an intuitive way to identify the threat.
Chapter 7 proposes a framework to deal with the emerging security threat,
namely collusion attack. It enables an intuitive way to detect the collusion
attack.

Finally, Chapter 8 concludes the book and presents the authors’ directions
for future research.

1.6 Summary

In this chapter, we have briefly introduced the fundamental background
knowledge that is relevant to the application of formal methods to security
protocol analysis. Formal analysis for security protocols has gradually come
to a stage of maturity and consolidation after being developed for the past
twenty years. However, emerging issues and trends in this field challenge us
to find new solutions for them.
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A variety of security protocols have been developed to provide information
on the standards and rules used for secure communication between the many
points within a computer network and across the internet. In particular, e-
commerce protocols have recently attracted more attentions. Regardless the
rapid growth of online trading, people become more concerned about the
safety of electronic transactions due to increasingly complex protocols and
hostile environments. This poses more pressure to verify the reliability of e-
commerce protocols.

Formal methods can be viewed loosely as a combination of an abstract
mathematical model of the behaviour of a system and corresponding require-
ments regarding the correctness of the system, together with a formal proof
to determine the system has all the required properties that together make
it functional and useful. Traditional analysis of security protocols depends on
human inspection, simulation, and testing. Unfortunately it cannot assure the
quality of security protocols.

Formal methods can be classified into theorem-proving, model-checking
and formal logic. Theorem proving uses higher-order logic to reason about
possible protocol executions, and provides mechanized proofs including au-
tomated tools and proof checking. Some of them may provide alternative
counter-examples. Model checking is to verify a formally specified system
by checking whether it can be satisfied by the model. The specification is
usually realized using temporal logic such as CTL and LTL. In addition to
temporal logic, term logic, predicate logic and modal logic are indispensable in
all branches of formal methods. There have been a number of publications in
the security areas. Several top-tanked international conferences and journals
that have high impact factors and publish high quality papers are presented
in this chapter for readers’ reference.

As network-based electronic transactions become more and more depen-
dent on computer networks, and as cryptography becomes more widely used,
the types of transaction to which a cryptography can be applied can be-
come varied and complicated, such as financial transactions that may include
new security properties such as fairness and freshness. Also, the types of new
threats become more varied, such as denial-of-service and traffic analysis, and
pose a new challenges to traditional formal methods for security protocol
analysis.

The financial transactions depend on properties such as freshness as well
as security properties protected by traditional security services. The latter
include secure group communication, in which a key must be kept secret as
members can join or leave, and negotiation of data structure such as security
association rather than keys. Furthermore, the new types of threats, such as
collusion attacks, denial-of-services and traffic analysis, become more implicit
and dangerous. We have to be concerned not only about the external threats
that may attempt to break the protection over secrets or impersonate the
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honest principals, but the internal threats that may attempt to gain unau-
thorized access to the secrets by collusion with a certain number of dishonest
principals.

This chapter also gives a brief discussion to the challenging issues that are
focused in this book, including the formal methods especially for the secure
transaction protocol analysis, uncertainty issues to be solved, application of
data mining in protocol analysis and detection of collusion attacks.
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Overview of Security Protocol Analysis

This chapter gives an overview of the fundamental concepts and formalism
with respect to formal analysis and verification of security protocols that will
be used in the rest of the book. Some recent studies into developing new formal
methods to cope with the emerging issues and threats in this research field
are also introduced to make clear the challenge in front of us and the current
situation.

This chapter is organized as follows. In Section 2.1, we start with intro-
ducing some basic concepts, including the notations and terminology used
in the book. Section 2.2 presents several security protocols, security service
provided by protocols and principles of cryptography. In Section 2.3, we intro-
duce the research into analysis and verification of security protocols. These
are classified into different categories based on their specific purposes and
theoretical foundation. Section 2.4, Section 2.5, Section 2.6 and Section 2.7
describe the attack-construction approach, inference-construction approach,
proof-construction approach and other approaches using formal tools and lan-
guages, respectively. Finally, we summarize this chapter in Section 2.8.

2.1 The Formalism

A security protocol is usually described by enumerating the messages trans-
mitted between the principals, and by symbolically indicating the source, the
destination, and the contents of each message. However, it seems that this
conventional notation is not convenient to manipulate by logic, since we wish
to integrate exact meanings into each part of each message and the meanings
are not always obvious from the data contained in the messages. Thus, it
is necessary to introduce a more useful notation, which not only transforms
each message into a logical formula but also preserves correspondence with
the original specification of the protocols. This logical formula is an idealized
version of the original message. For example, in BAN logic [22], each idealized
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protocol is annotated by assertions, which usually describe beliefs held by the
principals.

In the remainder of this section, we give a brief description of the con-
cepts and notations, the postulates (inference rules), the fundamental meth-
ods for formal analysis of security protocols, including inference-construction
methods, attack-construction methods, proof-construction methods and for-
mal specification languages and tools.

2.1.1 Basic Notations and Terminology

The objects of security protocols can be classified into three categories; prin-
cipals (also called participants), encryption keys, and formulae (also called
statements). Usually, the uppercase symbols C, M, P, A, AS, X, Y, Z, and
CA denote specific principals; k ranges over the encryption keys; Spv() and
Kpv() denote the private signature key and key-exchange key, respectively,
and Spb() and Kpb() denote the corresponding public signature key and key-
exchange key, respectively; m indicates the transmitted messages; CertS ()
and CertK () denote the signature and key-exchange certificates respectively;
H () denotes the one way hashing function; α and β represent a sequence of
actions; P and Q represent the statements. All these symbols can be used
either as metasymbols or as free variables.

The conjunction is the connective, denoted by comma or ∧. It should sat-
isfy the properties of commutativity and associativity. The negative is denoted
by ¬. Other constructs are defined below.

Send(X, Y, m): X sends the message m to Y.
Generate(X, m): X generates the message m.
P −→ Q : Q can be concluded if P is true. This construct indicates axiom
for P can be composed of several formulae with conjunction, such as P =
P1 ∧ P2 ∧ . . . ∧ Pn, n ≥ 1.
P ←→ Q : P is an equivalent proposition of Q.
	α Q : Q will be true if the action α is successfully finished.
P 	α Q : Based on the current P and α, we can conclude that Q is true.
P |∼α ¬Q : Based on P and α, we can non-monotonically conclude Q is
untrue.
e(m, k): The message m is encrypted by the symmetric key k.
E(m, k): The message m is encrypted by the public key k.
S(m, k): The message m is encrypted by the private key k.
Auth(X, Y, m): X authenticates message m sent by Y.

On the other hand, this section describes some of the terminology used in
the following context. Since many researchers define their own terms, it is
necessary to standardize them according to the definitions below.
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• Cryptanalysis is the science of breaking the cipher text without knowl-
edge of the key. The approaches mainly depend on the letter frequency,
and any information with respect to the context available. This technique
is very complicated and has the potential to defeat all but the best en-
cryption methods.

• Strong encryption is an encryption method that is hypothetically be-
lieved to be computationally unbreakable. In addition, it is robust and
invulnerable to any form of cryptographic analysis.

• Authentication protocol can be interchangeably used with authenti-
cation protocols and cryptographic protocols. It consists of a set of rules
specifying the messages transmitted in an encryption system and assists
in distributing secret keys.

• Belief logic is based on belief. The reasoning systems use the rules about
how belief is propagated to achieve new beliefs.

• Epistemic logic is based on knowledge. Although the reasoning is similar
to belief logic, these logics are used to reason about knowledge rather than
belief.

• Session key is a secret key shared between two communication principals
only. As the name implies, this key is established for one session only. It
will expire once the session ends.

More treatment of the changes of these constructs can be seen in the following
chapters. Next, the inference rules used to characterize them are outlined.

2.1.2 Inference Rules

As mentioned in [22], in the process of authentication, we have to be con-
cerned with the distinction between two periods, the past and the present.
The present starts at the beginning of a special transaction in protocols. All
messages transmitted before this time are usually considered to be in the past.
The verification of protocols should be careful to prevent any past messages
from being being treated as the present. The beliefs are usually assumed to
be steady during the whole protocol run.

An encrypted message is denoted as a logical formula bound together and
encrypted with an encryption key. The message is transmitted from the sender
to the recipient and can be described by using the formula with dynamic
property. It is reasonable to halt the verification if we cannot prove the goal
is true according to the current premises and assumptions.

The description of several inference rules are as follows.

• The revelation rule presents that the message transmitted in plaintext
cannot be protected. As to message m, we postulate:

Know(X, m),Send(X, Y, m)
Know(Z, m)
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• The union rule describes a situation where the conclusion Q of the former
action α is the premise of the later action β.

P 	α Q,Q 	βR
P 	αoβ R

There is some flexibility to adjust this rule. For example, if a new formula
R 	γ W is inserted behind Q 	βR, a new conclusion P 	αoβoγ W can be
obtained.

• The generation rule says that if the message m is generated by X, then
X must know m.

	Generate(X, m)Know(X, m)

The above three rules concern the generation and delivery of messages. In
reality, the messages have to be transmitted between the initiator and the
responder by encryption. However, we have no idea whether the messages are
sent by plaintext or ciphertext. The remaining inference rules are extended
from the above rules and the details can be found in the next chapter.

On the other hand, we need to describe how to allocate keys and encrypt
and decrypt messages by using symmetric keys and public keys.

• Encryption by symmetric keys. We postulate:
Know(X, m),Know(X, k)

Know(X, E(m,k))

where k and m represent the symmetric key and message m known by the
principal X.

• Encryption by public key. We postulate:
Know(X, m),Know(X, K)

Know(X, S(m,K))

where K means public keys, which may be a public key-exchange key or
a public signature-key.
In the opposite way, we can have the decryptions by symmetric keys and
public keys, respectively.

• Decryption by symmetric key. We postulate
Know(X, E(m,K)),Know(X, k)

Know(X, m)

This rule says that if the encrypted message m by symmetric key k is
known by X and X knows the symmetric key k, then X must know m.

• Decryption by private key. We postulate
Know(X, S(m,K)),Know(X, K−1)

Know(X, m)

This rule says that if the encrypted message m by public key K is known
by X and X knows the private key K−1, then X must know m.

The above inference rules are an aid to reasoning about the belief in a security
protocol. They are applied in the initial assumptions to conduct a proof or to
answer questions about a protocol.
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2.2 Security Protocols

In general, the business messages in e-commerce must be electronically trans-
mitted in some manner, and therefore, security services are required to ensure
reliable, trustworthy electronic transmission of the messages. As mentioned
above (section 1.4.3), the security mechanisms are usually classified into three
categories: The above security measures are usually achieved using cryptog-
raphy and integrated into security protocols, which are agreements upon
methods of communicating and transmitting data between telecommunication
devices. A number of security protocols, including communication protocols
and secure transaction protocols, have been developed to achieve the secu-
rity objectives of different layers. Figure 2.1 depicts the intermediate role of
security protocols. Several security protocols are listed below.

Security Protocols

Response 
MC

Request 

Fig. 2.1. Function of security protocols

• Transmission Control Protocol/Internet Protocol (TCP/IP) [64] is a widely
used protocol on the internet. TCP operates at the transport layer of
the Open System Interconnection (OSI) model, while IP operates at the
network layer. The transport layer provides data reliability and integrity
checks of the data received. The network layer performs data routing and
delivery.

• The protocol that underlies the world wide web (WWW) is called the
HyperText Transfer/Transport Protocol (HTTP) [151], which operates on
the top of the TCP protocol. Its primary purpose is to define message
formats, message transmissions, and web server and browser commands.

• In order to deal with security concerns, the SSL (Secure Socket Layer) [54]
is responsible for routing messages across networks from their source to
their destination. SSL adds security, inserting itself between the HTTP
application and TCP.

• Secure Electronic Transaction (SET) protocol was developed with the goal
of providing a secure payment environment for the transmission of credit
card data.

Although most of these are not viewed as secure transaction protocols, they
actually contribute to ensure the security of transactions. This book focuses
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on the formal analysis of electronic transaction protocols such as SET. We also
present the current methods for formal analysis of authentication protocols
and cryptography. This provides a comprehensive explanation of the formal
analysis of security protocols.

2.2.1 SET Protocol

Secure Electronic Transactions (SET) [140] was jointly developed by the
credit-card companies Visa and MasterCard, in conjunction with leading com-
panies in the computer industry such as Microsoft and IBM. It has shown the
potential to become a dominant force in assuring secure electronic transac-
tions. SET provides an open standard not only for protecting the privacy but
also for ensuring the authenticity, of electronic transactions. It is critical to
guarantee success in electronic commerce over the internet. Without confiden-
tiality, consumer secrets cannot be assured, without integrity, the messages
between initiator and recipient can be altered, and without authentication,
neither the merchant nor the consumer can trust that valid transactions are
being made.

Secure Electronic Transactions relies on the techniques of cryptography to
preserve the secrecy of messages. There are two different encryption mecha-
nisms used in SET protocol, as well as an authentication mechanism. Symmet-
ric encryption and public-key encryption are used to generate and transmit
session keys, respectively. SET simply uses session keys (56 bits) rather than
public-key cryptography that can afford the security and protection. The re-
mainder of the transaction depends on symmetric encryption in the form of
DES. The public key cryptography is only applied to encrypt session keys and
for authentication. The computational cost of asymmetric encryption may be
the main concern for substituting it with weak 56 bit DES encryption.

If the session key is used to encrypt a message, then it will be unreadable
by unauthorized parties. If the same key is applied to the encrypted message,
then the plaintext of the message will be restored. However, we must find
a secure way of transmitting the key to all parties. Public-key encryption
algorithms use two keys: a public and a private key. Theoretically, it is difficult
to deduce the private key from a public one. When we sign a message using
someone’s public key, only the holder of the private key can read it. Usually,
the public key is known by the public. Consequently, this ensures that only
the private key holder can read messages encrypted by his/her private key.
In the SET protocol, two different encryption algorithms, DES and RSA, are
used for the purposes of symmetric encryption and asymmetric encryption,
respectively. However, a 56-bit key using DES has been criticized because it
can be easily cracked using modern computers. In 1993, a brute-force DES
cracking machine was designed by Michael Wiener. As the power of computers
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grows, the weak 56 bits DES encryption will become a fatal issue to the safety
of transactions.

Authentication plays an important role in SET to ensure that consumers
and merchants have faith in the authenticity of each other’s messages. Without
authentication, any intruder could pose as a merchant or a customer, accept a
transaction from a party, and then repudiate any obligation. Authentication
is critical to achieve trust in electronic commerce.

SET uses digital signatures to achieve authentication. Using a hashing al-
gorithm, SET can generate a small message digest of the transaction message.
It is then signed using the sender’s private key. By comparing the transaction
message and the message digest, along with the sender’s public key, the au-
thenticity of the transaction can be verified. Digital signature helps achieve
non-repudiation, since the sender cannot later persuade us that the message
was not sent using his/her private key. Privacy of transactions, and authenti-
cation of all parties, are important for achieving the level of trust in electronic
transactions. However, the encryption algorithms and key-sizes used will be ro-
bust enough to protect transited messages from malicious attackers. The idea
of the secure electronic transactions protocol is a good start for the success of
electronic commerce. However, it remains to be seen whether the protocol is
reliable using formal analysis.

2.2.2 Netbill Protocol

Netbill [38] is a protocol designed for micropayment systems for the selling and
delivery of information and goods through the internet. It was developed by
Carnegie Mellon University in conjunction with Visa and Mellon Bank to deal
with micropayments of the online order. As the use of the internet to conduct
commerce increases, the internet also poses special challenge due to the lack of
standard security mechanisms. However, the convenience makes it a promising
and attractive means for future commerce. At the same time, the internet
changes the form of traditional transactions. The information transmitted via
open networks and distributed systems is subject to observation by malicious
attackers, and the transaction data recorded by a merchant’s computer gives
rise to privacy problems. On the other hand, parties may want to authenticate
each other, negotiate the price, choose the means of payment, or control the
access.

The NetBill transaction model includes three parties: the customer, the
merchant and the NetBill transaction server. The NetBill server acts as both
a certification authority and a payment intermediary linked to conventional
financial institutions. In addition, it also takes charge of the distribution of
public/private key pairs as well as the symmetric keys that are used to encrypt
the exchange between the customer and the merchant, the customer and the
server, and the merchant and the server.
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A Netbill transaction consists of three phases; price negotiation, goods
delivery, and payment. In a transaction, the customer and merchant interact
with each other in the first three phases; the NetBill server is not contacted
until the payment phase, when the merchant eventually submits a transaction
request. Each phase has a collection of transaction objectives so as to provide
authentication, privacy, payment, delivery or access control.

Before starting the transaction, the customer and merchant need to reg-
ister their public/private key pairs and user identifications with the Netbill
server. Before establishing communication channels, a mutual recognition oc-
curs to allow the parties to authenticate each other in terms of the public
key Kerberos system. A session key is established between the customer and
merchant by virtue of a session ticket and a certificate.

• Negotiation is the phase where the customer requests a price quote from
the merchant, and the merchant responds with a specialized quotation
according to the customer profile. Identification and authentication of the
customer is required in this step.

• Goods delivery is applied once the customer agrees with the negotiated
price with the merchant. A new symmetric encryption key is generated to
encrypt the goods without including the key in the message. The decryp-
tion key is delivered to the customer only when the merchant confirms the
received payment.

• Payment ends the transaction by depositing the payment with the mer-
chant and sending the decryption key to the customer. In this phase, an
Electronic Payment Order (EPO) is applied. It includes transaction infor-
mation and payment instructions, the former is readable by the merchant
and Netbill server, and the latter is only known by the Netbill server.

In contrast with other electronic transaction protocols, Netbill has some par-
ticular properties. The customer is only charged after receiving the encrypted
information, and the corresponding decryption key is only delivered after pay-
ment.

2.2.3 Security Services

Here we give a description of the general security services that security pro-
tocols are usually required to provide. Although many security terms have
been widely used in the literature, we can see various interpretations of them,
which may cause confusion. A coherent definition may avoid the vagueness
and be of benefit to the understanding of the security properties of protocols.
As mentioned above, the security properties largely depend on cryptography.
It is not easy for us to find a security protocol that does not include any
cryptographic techniques. Nevertheless, as the computation power of modern
computers advanced, so did the complexity of cryptography such as base-64
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encryption versus base-128 encryption. A protocol can only be claimed to be
secure if it can satisfy the required secure properties under the assumption
that the applied cryptographic algorithms are robust and trusted.

In the open network and distributed systems, messages must be transited
in some secure manner. Several important security services are required to
ensure reliable, trustworthy electronic transmission of messages. The primary
security services can be roughly divided into five categories:

• Confidentiality: When a message is sent electronically, the sender and re-
ceiver may desire that the message remain confidential and thus not be
read by any other parties. In other words, the information is accessible
only to those authorized to have access. Confidentiality is one of the de-
sign goals of many cryptosystems, and is realized in practice via modern
cryptography. In a more strict interpretation, the high-level users should
not know the secrecy of low-level users. It should be immune to any per-
formed traffic analysis. For example, in the Needham Schroeder protocol,
though the trusted server S may know Alice wants to talk to Bob and
maybe even knows Bob agrees with Alice’s request, the server is unable
to read the contents and trace the communication between Alice and Bob.
This property states which behaviours are permitted and which are not. It
must be formulated as a set of system behaviours rather than an individual
predicate during formalization.

We can illustrate the confidentiality using an example in e-commerce.
Suppose X and Y are principals who want to talk with each other, and
ST denotes a set of sensitive messages such as order details and credit
card information, that should be kept confidential under the protection
of cryptography. Let K represent a session key between X and Y, which
is issued by a server S. What the confidentiality means here is that the
form of plaintext of messages in ST should not be known by an intruder.
Although the intruder perhaps obtains the sensitive messages under en-
cryption, he/she is unable to decrypt them without the corresponding key.
However, the protection over confidentiality can be breached, probably X
or Y divulges the key, as long as the intruder gets hold of the decryption
key.

• Integrity: When a message is sent electronically, the integrity denotes that
the message is not modified or corrupted during its transmission. A mes-
sage that has not been altered in any way, either intentionally or unin-
tentionally, is said to have maintained its integrity. The integrity can be
compromised in two primary ways. Malicious alteration denotes the in-
tentional corruption of messages, such as altering personal bank account
details maliciously, and forging a credit card transaction. Accidental al-
teration denotes the unintentional corruption of messages, such as com-
munication block and hardware outrage. Considering data integrity, one
important aspect is to assure that the data can be accessed and modified
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by those who are authorized to do so. If a modified message is accepted by
the recipient, it indicates the violation of this property. In reality, the in-
tegrity checking usually happens along with the entity authentication and
the other alike authentications, but they play different roles. The former
guarantees the validity of messages but the authentications assure that the
other party is alive and whom he claims to be.

In an electronic transaction, the payment information sent from pur-
chasers to vendor includes order information, personal data, and payment
instructions. One of the major security concerns is to ensure that it is
not alerted. If any component is modified during transit, the transaction
will not be processed correctly. We must provide the means whereby the
contents of payment information received match exactly the contents of
the message sent. An effective method to assure this security property is
by the use of digital signature based on an one-way cryptographic func-
tion, namely hashing. To generate the digital signature of a message, we
must obtain the digest of a message using the hashing function. The mes-
sage digest is encrypted using the sender’s private key and is appended to
the original message. The result is known as the digital signature of the
message.

• Non-repudiation: Non-repudiation denotes the assurance that a transferred
message has been sent and received by the principals claiming to have sent
and received the message. It is a means to guarantee that the sender of a
message cannot deny having sent the message and that the recipient can-
not deny having received the message. Well-designed electronic transac-
tion systems provide non-repudiation, which is the provision of irrefutable
proof of the origin, receipt, and contents of an electronic message. The
most effective way to enable it is through the combined use of hashing in
both transactional directions and digital signing. In addition, transaction
certificates, timestamps that contain the date and time a document was
composed, and prove that a document is valid at a certain time, and con-
firmation services to indicate that messages were sent and/or received, all
help to provide non-repudiation.

To achieve non-repudiation, we must confirm that one participant is
protected against possible fraud by another. This requires that both partic-
ipants keep evidence with respect the transactions occurring . Moreover,
it is insufficient for any participant to provide the required proof. The
proof must be able to convince a trusted third party. With the collected
evidence, if we can indicate that the recipient could have received a mes-
sage in case the sender had sent the message to him/her, then we can
say the non-repudiation property holds. As already described, the digital
signature mechanism can be used to sign a message from Alice, so Bob
can confirm that the received message is indeed sent from Alice. A trusted
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third party is an alternative way to achieve this goal, but this may impose
extra communication costs.

• Data Authentication: This security service not only assures that the mes-
sage to a receiver is indeed originated by the correct sender, but also
confirms that message has not been altered. In some cases, the freshness
is also required for data authentication.

In a protocol run, one process may be the authentication where Bob
authenticates that the message was really sent by Alice and is still in the
period of validity. On the other hand, Bob needs to assure that the mes-
sage has not been tampered with during its transit. These two aspects
are two primary components to guarantee data integrity. In reality, the
authentication may involve several authentications back and forth such
as the one-way authentication, two-way authentication and three-way au-
thentication in [23].

Although we have not talked much about the freshness of messages, this
is actually an important issue in data authentication. Bob may not believe
in an outdated message from the sender, but wants the message from Alice
to have been sent recently. Timestamp is an efficient way to warrant the
freshness. To obtain more detailed information about the application of
timestamp, we can refer to Denning’s model in [40].

• User Authentication: The most widely used form of user authentication
is by passwords in conjunction with identification code (ID). In practice,
the verification of the ID can use physical means such as identity card of
the user, or calling a trusted authority or using the user’s PIN. The user
authentication is usually combined with data authentication. Thus we are
able to verify that the message is originated from the purported principal
and that the message has not been altered. If the identity authentica-
tion is passed, a secure communication channel is established between the
principals.

When an electronic message is received by a user or a system, the
identity of the sender needs to be verified in order to determine if the
sender is who he claims to be. In some case, trusted third-party services
are engaged to ‘vouch for’, or authenticate the user. Common authentica-
tion measures are digital signatures, challenge-response, password, smart
card, and tokens. A notion of timeliness that is ignored in the previous
formalization needs to be considered. It represents that the user’s identity
authentication is a one-off process. In other words, it is unallowable to
go on to another new transaction under the assumption that the previous
identity authentication is still valid and makes sense.

It is actually not easy to include the user authentication into the formal
formulae. In practical formal analysis, this authentication is usually inte-
grated into the data authentication at each step of the interaction between
principals.



28 2 Overview of Security Protocol Analysis

• Key Authentication: When using public-key cryptography, the key authen-
tication can arise. In traditional symmetric cryptography, the encryption
key is trivially related to the decryption key, in that they may be identical
or there is a simple transform to go between the two keys. The keys, in
fact, denote a shared secret between two or more parties that can be used
to maintain a private communication link. Key authentication was not
an issue in symmetric cryptography because it uses some methods of key
distribution to assure authenticity. However, the public-key cryptography
cannot avoid this issue. The public key can be known by any of the prin-
cipals without compromising the encryption algorithms, which can result
in some attacks by forging a reagent public key. For example, an intruder
may claim that a key is Alice’s public key, but it is actually known by
the intruder. To enable authenticated, confidential communication across
open networks, we need to ensure both the secrecy and authenticity of the
public-key. In other words, the public key is only known by the authorized
principals, and is verified to be valid.

An alternative to this issue is the use of certificate authorities (CA) via
a public key infrastructure (PKI) tree to authenticate that the public key
belongs to the claimed principal. The Certificate Authority authenticates
a principal’s claims according to its specified policies. For example, this
Certificate Authority may require Alice to present a driver’s licence or
passport for an online transaction before it will issue a certificate. Once
Alice has provided proof of her identity, the Certificate Authority creates
a certificate containing Alice’s name and her public key and digitally signs
it. It contains not only owner identification information, but also a copy of
the owner’s public key. The public key of the Certificate Authority may be
known to as many people as possible. Thus, by trusting a third party and
a single key, a key authentication can be achieved in which one can have a
high degree of trust. Meanwhile, this method relies on a certificate issued
by Certificate Authority. Thus, any defective certificate can give rise to
some problems with respect to the key authentication.

Key authentication has been widely used in many security protocols,
like the recent SET protocol [138, 139, 140] to secure payment card trans-
actions over open networks. A representative example of this is a portion
of the purchase request, in which the authentication takes place through
the merchant M transferring an initiate response to the cardholder C ac-
cording to the following steps:
– M generates an initiate response IniRes.
– M digitally signs it by generating a message digest of the IniRes,

and encrypts it using the merchant’s private signature key, namely
{Sign(H (IniRes), Spv(M ))}, where H (IniRes) denotes the one-way
hashing function, and Spv(M ) denotes the merchant’s private signa-
ture key.
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– M sends a response along with the merchant and payment gateway’s
certificates to the cardholder C : m = {Sign(H (IniRes), Spv(M )),
Cert(M ), Cert(P)}, where P, Spv and Cert represent the payment
gateway, private signature key and certificates, respectively.

M sends to C the message:

{Sign(H (IniRes), Spv(M )), Cert(M ), Cert(P)}
After receiving this message, the cardholder carries out the following op-
erations:
– C obtains the public keys of M and P, namely Spb(M ) and Spb(P)

from the certification path of PKI, after verifying that the certificates
of M and P did not expire by traversing the trust chain to the root
key, where Spb denotes public signature key.

– C verifies the merchant’s signature by decrypting the signature with
the merchant public signature key Spb(M ). C then verifies that the
obtained result is identical to the newly generated message digest of
the initiate response IniRes. Thereby, it is able to ascertain the validity
of the signature and the integrity of the signed message.
These exchanges assure the following:

– The authenticity of M and that the public key Spb(M ) was authorized
by CA.

– The authenticity of P and that the public key Spb(P) was authorized
by CA.

– The integrity of the initiate response message IniRes by M.
In reality, we may need to verify additional security properties using similar
exchanges but in different authentication ways and directions. For exam-
ple, the Needham and Schroeder protocol and Yahalom protocol, both key
distribution protocols, generate the key via a server. However, the Diffie-
Hellman protocol is a key agreement protocol, in which the participants
all contribute to the resulting keys.

• Authorization (also known as access control): Computer systems require a
certain amount of data sharing. Limiting access to data and systems only
to authorized users is the main objective of authorization. The certificate,
‘privilege management’, and firewall technology are effective forms of au-
thorization. This process helps to identify principals. When a principal in-
tends to access specific information or resources, the authorization process
validates that the principal has been granted permission to use that infor-
mation or resources. Authorization may be based on various restrictions
such as time restrictions, credit limit or restrictions where ‘Anonymous
consumers’ or ’guests’ have very few permissions.

• Freshness: Freshness guarantees against replication of messages or keys,
where a message replay attack may happen. During the message exchange
between principals, an old message or key can be replayed by an intruder
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if the message freshness or key freshness is not assured. In Message 4
of the Needham-Schroeder protocol, B provides key confirmation to A,
since the inclusion of nB means that the message originates from B, and
hence B must know and agree with the key KAB. However it should be
clear that this protocol does not provide key freshness, because B has not
told A whether this message has just been generated by B, or is just a
replay message generated before by B. The lack of freshness can usually
be ameliorated using timestamp or a random sequence number within the
scope of the encrypted message.

• Fairness: With the growth of open networks, many electronic transaction
protocols have been proposed and applied, in which the requirement of fair
exchange of electronic items has become prevalent. In this type of protocol,
no party should be able to have an advantage over another party when
exchanging messages. Two or more parties can exchange their information
in a fair way. Fairness is not required for non-repudiation, but it probably
would be desirable in some cases under the requirements of the partici-
pants. For example, in the purchase request process described above, the
cardholder could refuse to continue the payment after the merchant has
signed and agreed with the purchase request from him/her. This security
service has been discussed and defined in recent works such as [107, 109].
Trusted third parties are a useful tool to address this issue, but this can
result in an increase of computations and/or communications.

• Liveness: A security protocol may either rely on or try to assure liveness or
fairness properties as well as safety properties. A liveness property states
that something good will finally happen in contrast to a safety property
where something bad will never happen. This property guarantees that
each request from any party is followed by the corresponding service, and
each run of protocol is eventually terminated. To evaluate the liveness
property, it is necessary to keep track of the visited states of the protocol,
and the order of these states. For example, it is probably necessary for a
transaction system to receive an acknowledgement for each message that
it sends. In [77], the liveness property is expressed in temporal logic, and
a model checker was developed to analyse a security protocol for assuring
fair exchange of digital signatures.

• Non-repudiation: This security property guarantees that a transaction can-
not be later denied by one of the parties involved participants. In electronic
transaction systems based on open networks, this property plays an im-
portant role because the agreement on a transaction has to be completed
through networks rather than in the traditional face-to-face manner. It
intends to provide all parties with evidence that a certain run of protocol
has really occurred. It is able to prove that a message has been sent by the
sender and it has been received by the claimed responder. For example,
the merchant M sent a signed initiate response to the cardholder C in
response to C ’s purchase request. It is essential that we have sufficient ev-
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idence to prove that the message was sent by M and received by C shoud
either of them attempt to deny it.

Clearly, traditional methods such as seals or signatures are easy to
forge. The non-repudiation of digital information can be assured using
signature-based mechanisms. Furthermore, the development of biometric
techniques, such as retinal scanning and finger printing, and DNA encryp-
tion, will perhaps provide non-repudiation.

• Anonymity: Anonymity is a security property that an individual’s true
identity is unknown in a certain situation. Suppose there are a set of arbi-
trary elements including principals and messages, if an element is uniden-
tifiable, then the element is said to be anonymous. For example, A wants
to communicate with B but he/she does not want B to know his/her real
identity. The degree of anonymity can be varied under different scenarios.
For example, if a message is only known by A, B and C, each of them
has equal opportunity of revealing this message, but we cannot determine
whether it is A, B or C who did it. Nevertheless, if A has plausible evi-
dence to prove he/she is innocent, then we may deduce that it must have
been B or C who disclosed the message. Although the anonymity still
remains, it is easier to decide that he/she is either B or C.

If a set of messages are shared by a number of parties, the degree of
anonymity is higher with respect to these messages. However, this may
result in a serious attack, namely collusion attack, in which a principal
can perform an attack in conjunction with a certain number of dishonest
principals (see Chapter 6).

Many examples of systems showing different degrees of anonymity have
been analysed using FDR, and the CSP, a possibilistic method, was also
used to formalize this property, in which the renaming operator of CSP is
applied to shuffle a set of events E. If the observed system is unchanged
after an arbitrary shuffling of the set E, then the system is able to provide
anonymity.

• Availability: Regardless of the above security properties to protect mes-
sages in transit from malicious attacks, a system is also needed to provide
correctly and promptly, the required services to authorized users. What-
ever key-establishment protocol or a key-distribution protocol we formal-
ize, we would like to ensure that a public key pair or a session key is really
established between communicating parties. As a result, if A wants to talk
with B through a trusted server S, S must be able to work promptly and
subsequently generate a session key for A and B and assure that A and B
both know this fresh session key.

Certainly, availability is just used to serve the legal users rather than
for malicious intruders. Thus, we must prevent intruders from utilizing the
available services to achieve their illegal purposes. The formalization of a
security protocol needs to take this into account.
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2.2.4 Principles of Cryptography

In general, the messages in electronic transactions must be electronically tran-
mitted in some manner, and therefore, security services are required to ensure
reliable, trustworthy electronic transmission of the messages. The security
mechanisms are roughly classified into three categories [48, 59, 102]:

• System security means nothing happens to the computer and equipment,
including virus, logic bomb etc.

• Network security means only the authorized users can gain access to the
network and do what they can do based on the privilege assigned to them.

• Data security means how to ensure the integrity and confidentiality of
transited messages over open networks.

The primary method used to achieve data security is encryption [13, 23], which
is a process of encoding a message so that the meaning of the message is not
obvious. The reverse process is called decryption, transforming an encrypted
message back into its normal form.

The original form of a message is usually known as plaintext, and the en-
crypted form is called ciphertext [130]. The set of all the plaintext messages
is denoted by MP ; similarly the set of all the ciphertext is denoted by MC ,
and f is a mapping from the variables in MP into the set MC . P and C rep-
resent plaintext and ciphertext, respectively. Both of them are stored and
transited in binary data. They can be expressed in mathematical formulae:

C = f(P) (2.1)

In the reverse process, the decryption function f −1 operates on C to obtain
plaintext P :

P = f−1(C) (2.2)

where P ∈ MP , C ∈ MC .
Actually, f is viewed as the encryption algorithm (function) and f −1 de-

notes the decryption algorithm. Since the encryption and decryption are in-
verse functions of each other, the following formula must be true:

P = f−1(f(P)) (2.3)

There are two important classes of encryption algorithms - symmetric cipher
and asymmetric cipher - which aim to achieve the goal of data security as
follows.

Symmetric cryptography (secret-key cryptography or single-key cryp-
tography) where entities share a common secret key is depicted in Figure 2.2.
This key must be kept secret because anybody who obtains this key can en-
crypt or decrypt messages unrestrictedly using this key. In symmetric key
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Fig. 2.2. Symmetric cryptography

systems, the representative encryption algorithm in use is the Data Encryp-
tion Standard (DES) [153]. Usually, the encryption and decryption processes
with a symmetric key are represented by:

C = fk(P) (2.4)

P = f−1
k (C) (2.5)

Symmetric cipher can be classified into two categories, block cipher and stream
cipher. The former operates on a certain number of bits, such as 64 bit or 128
bit blocks in the DES cipher, and the latter operates on a bit at a time, such
as the classical Caesar cipher. Both ciphers use the same key for encryption
and decryption. In a stream cipher, only one bit is influenced by the bit
error during transmission. In contrast, in a block cipher, the whole block will
be affected in case of one bit error. Although stream ciphers can provide
higher security than block ciphers they have been criticized for the weakness
in assuring integrity. Since a stream cipher encrypts each bit of the plaintext
at a time it may result in the alteration of the ciphertext, such as inserting or
deleting letters, in a manner that is not easily detected by users. For example,
in a financial transaction, a customer wants to pay $100 for an online order.
The amount of money could be changed to $150 but it is not readily detectable.
Despite the difficulty of doing that, it still indicates a potential danger of the
increasingly rapid growth in computing power.

Classical ciphers consist of substitution ciphers and transposition ciphers.
A good cryptography system actually uses both of them.

A substitution cipher is the cipher in which each bit in plaintext is sub-
stituted for another bit in the ciphertext in terms of a known principle of
substitution, by which the recipient is able to invert the substitution and re-
cover the plaintext. The different types of substitution ciphers are introduced
in [23]. Caesar cipher is one of the representative ciphers. It is based on a
code book and replaces each plaintext character by a specified character. For
example, C is replaced by H, F is replaced by J, and Z is replaced by D, ac-
cording to the principle in which each character is replaced by the character
four to the right mod 26.

A transposition cipher is one in which the characters in the plaintext are
reordered rather than substituted for new characters. Usually, the transposi-
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tion is operated within fixed length blocks of the plaintext. For example, let
P = ‘A E J L E A R T H’ be the plaintext. Suppose the block size is equal
to 3, and the permutation is (3 1 2), which denotes that the first character
is rearranged to the third position of the ciphertext, the second character is
rearranged to the first position of the ciphertext, and the third character is
rearranged to the second position of the ciphertext, respectively. Eventually,
the ciphertext is C = ‘E J A L E A R T H’.

Regardless of its wide application in cryptosystems, this cipher involves
a considerable consumption of memory and requires every message to be a
multiple of a specified length. On the other hand, the frequency of the charac-
ters in ciphertext can be utilized by a cryptanalyst to estimate the plaintext
because the frequency of the characters in ciphertext is identical to that in
the plaintext.

Public key cryptography, namely asymmetric cryptography, where
each communicating entity has a unique key pair, a public key and a private
key, is depicted in Figure 2.3. It was introduced by Whitfield Diffie and Mar-
tin Hellman [42]. Diffie-Hellman cryptography is still used today, but it has
some vulnerability to a man-in-the-middle attack. In asymmetric cryptogra-
phy, the key used for encryption is different from the key used for decryption.
Thus, it is infeasible to derive the decryption key from the encryption key due
to the computational complexity. The public key (encryption key) is often
made public, and the private key (decryption key) is only known by a certain
party and must be kept private. The recent SET protocol proposes a public
key-exchange key and private key-exchange key, in which messages will be en-
crypted with the private key and decrypted with the public key. This is often
used to generate a digital signature. The RSA algorithm by Rivest, Shamir
and Adleman is a prevalent scheme for digital signature. To avoid possible
confusion, k and k−1 are used to denote the encryption key and decryption
key rather than the public key and private key, respectively.

C = fk(P) (2.6)

P = f−1
k−1(C) (2.7)

Although asymmetric cryptography is important to achieve user authenti-
cation and key management, it is actually not an efficient way to exchange
messages owing to the considerable efforts required for computations. On the
contrary, symmetric key algorithms are generally much less computationally
intensive than asymmetric key algorithms. The disadvantage of symmetric
key algorithms is the requirement of maintaining one copy of a shared secret
key at each end. As keys are vulnerable to being discovered by a malicious
cryptanalyst, they need to be altered frequently and kept private whenever
distribution and in use. Consequently, it is hard to select, deliver and store
keys without errors and loss.
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Fig. 2.3. Public-Key cryptography

As a result, most cryptosystems use the much slower asymmetric algo-
rithms to distribute symmetric-keys at the beginning of a session, then the
higher speed symmetric-key algorithms take over. Regardless of the reliability
issue in asymmetric key distribution, they tend to be more tractable.

The issuing of a certificate is used by one party to obtain the public keys
of other parties and assure that they are valid and associated with the right
parties. This is usually realized by establishing Certificate Authority (CA),
which is viewed as a trusted third party and takes charge of authenticating
public keys and associating them to the correct users. Certainly, CA must be
trusted by all parties.

A certificate may consist of the user’s personal details, such as name or ID
code, the user’s public key and lifetime, by which we can associate the user’s
public key to the correct user. Usually, the recipient needs to authenticate the
received certificate from the sender, which is linked to the entity that signed
it. By following the trust tree of public key infrastructure (PKI) to a known
trusted party, one can be assured that the certificate is valid. Figure 3.2 in
Chapter 3 illustrates the hierarchy of trust. The public key of the root is
known to all parties and may be used to verify each of the certificates in turn.

The problem of assuring a correct match between entity and public key
is difficult in practice. Thus additional authentication techniques need to be
integrated together with CA, such as external reliable third parties. Further-
more notaries may be required in some cases to authenticate personally the
party whose signature is being verified. Another problem that may be con-
fronted with this technique is due to the objective difficulties of setting up the
lifetime for certificates. It is not easy to give an appropriate value and may
result in negative influence in case it is too long or too short.

One-way hash functions are the functions that are easy to compute
but are extremely difficult to reverse. A hash function takes a string of any
length as input and converts it into outputs of some fixed length. Sometimes
the output is called as ‘message digest’ or ‘digital fingerprint’. One of its
properties is that a small change on the input can result in a significant
change in the hash value obtained. It is widely used to assure authentication
and integrity. Let H be a hash function and M be a message. The hashing
process is described below:

H(M) (2.8)
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MD5, SHA1 and RIPEMD-160 are three of the commonly used hash functions.
However, they have been reported to have some flaws in recent studies. A hash
function must meet two requirements if it is considered to be secure. Given a
message digest, it should be infeasible for an intruder to find a message that
matches the given digest. Also, it should not be possible to find two messages
whose digests are very similar or equivalent.

A typical use of a cryptographic hash would be digital signature. For se-
curity and efficiency reasons, many digital signature algorithms specify that
only the digest of the message is ‘signed’, but not the entire message. Hash
functions convert the plaintext of arbitrary length to a specified length for a
block cipher. Also, the converted messages can be sent to the recipient with-
out revealing it. Furthermore, hash functions can be served as a way to store
some sensitive text or value, such as password and PIN.

Digital signature is designed to bind the message originator with the
exact contents of the message. The sender uses his/her private key to compute
the digital signature. In order to calculate the digital signature, a one-way
hashing algorithm (such as SHA-1 [134]) may be used initially to calculate a
message digest. The sender’s private key is used at this point to encrypt the
message digest. The encrypted message digest is what is commonly referred
to as a digital signature.

RSA is one of the well-known algorithms to implement digital signature in
conjunction with hash functions. As we described above, the latter is applied
to transfer the plaintext to the block of certain length specified by the encryp-
tion algorithm, and the former is used to encrypt the converted text. Suppose
X and Spv(X ) denote the sender and his/her private key, respectively. Let Y
be the recipient. Then the encryption is as follows:

Sign(H(M),Spv(X)) (2.9)

The message M can be X ’s telephone number, bank account or similar things.
To help the recipient confirm the message is authentic, X ’s identity and M
are usually appended to the original message to construct a digital signature.

X,M,Sign(H(M),Spv(X)) (2.10)

When the recipient Y receives this message from the sender X, Y needs to
confirm that it has not been altered and was indeed signed by the X ’s private
key. The authentication consists of three steps:

• Generate the hash of message M, namely H (M ), using the publicly known
hash function.

• Apply X ’s public key to decrypt the encrypted hash of M in terms of
the described public-key cryptography: {Sign(H (M ), Spv(X )), Spb(X )}
⇒ H (M )



2.2 Security Protocols 37

• Compare the generated hash in the first step and the obtained hash in the
second step.

If the message M was not encrypted by the correct private key of X, or two
hash values are not identical, the authentication will fail. Therefore, it is es-
sential to prevent the forgery or compromise of X ’s private key and the hash of
messages. It should be extremely difficult for an intruder to obtain the private
key and generate an equivalent hash using a given message. The decryption of
messages encrypted by X ’s private key should be computationally infeasible.
Also, changing even one letter in the raw message changes the message digest
in an unpredictable way.

Although some approaches have been used to guarantee the private key is
really associated with X, there remains the problem that X can reveal his/her
private key to an intruder. In that case, we cannot assure the message was
indeed signed by X rather than an intruder. This issue is hidden but is highly
dangerous. It is called collusion attack in this book and will be discussed in
the course of the following chapters.

Timestamps are one of the important security services to guarantee the
freshness of delivered text or value. For some specific applications, such as
electronic transactions, people may want to add a timestamp along with the
delivered message to certify that the message is valid on a certain time. Then
the receiver can assure this message is still fresh within a certain time by
checking the attached timestamp against the local time. Certainly, it is im-
portant to maintain the consistency between clocks across the whole network.
To assure the accuracy of timestamps, we often derive the time from reliable
servers.

If we use timestamps in security protocols, it is necessary to be wary
of the forgery of timestamps by malicious intruders. One way to solve this
problem is to generate hashed timestamps and link the current timestamp
with the previously received timestamps. This is effective not only to prevent
the intruder from forging an equivalent timestamp but also to prevent the
collusion of producing timestamps between the sender and receiver.

Despite the difficulties of obtaining accurate timestamps and ensuring the
validity of the timestamps in distributed systems and open networks, it is
still an effective way to assist in authenticating messages that is valid within
a certain time. The Time Stamping Protocol (RFC3161) is a protocol that
defines the entities involved (the requestor and the Time Stamp Authority or
server), the message format and the communication between the entities.

Apart from the above methods, the access control, such as password,
fingerprint [161], and smartcard [80] can assist in identifying authorized users
and providing authentication. In addition, another powerful method is firewall
software [104]. Erecting a firewall between sensitive transaction information
and untrustworthy networks is essential to prevent security break-ins through
vulnerabilities in the operating system.
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These security services have been deployed to relieve the security concerns.
Among them, data and transaction security are critical. Without them, infor-
mation transmitted over the internet is susceptible to fraud and other misuse.
Hence the security of electronic transactions must be recognized and dealt
with when performing transactions over the open network.

2.2.5 Threats in Security Protocols

To enumerate completely all threats to which security protocols are subject
may be difficult and impractical. Although some traditional security issues
are important such as security management and policy, risk management and
security and law, they are not considered in this book. We mainly focus on dis-
cussing the security threats that may have an influence on the formal analysis
of security protocols. Furthermore, we need to pay attention to the emerging
issues in security protocols due to varied threats in complex protocols, such
as denial of services and traffic analysis, hence we not only deal with the
detection of security vulnerabilities in protocol design.

Man-in-the-middle attack (or MITM). This attack utilizes the vul-
nerabilities of security protocols to masquerade as one of the two parties to
the communication. For example, in public-key encryption, suppose A wants
to communicate with B, and that C wishes to deliver a false message to B
during the conversation. The protocol starts with the request of B ’s public
key by A. If B sends his/her public key to A, but C is able to intercept it,
a man-in-the-middle attack can begin. C can simply send A a public key for
which he/she has the valid private key. A, believing this public key to be B ’s,
then encrypts his/her message with C ’s key and sends the encrypted message
back to B. C again intercepts, decrypts the message, and encrypts it (after
modification if desired) using B ’s public key as originally sent to A. B will
believe this message is really sent to him/her by A.

The original Diffie-Hellman key exchange protocol has been found to be
vulnerable to the man-in-the-middle attack, when used without authentica-
tion.

Suppose Alice and Bob want to generate a shared secret key but they do
not know each other’s private key. To start the protocol, Alice and Bob need
to agree to use a prime number p=23 and base g=5. A brief example of this
protocol can be

• Alice selects a secret integer a, then sends Bob (ga mod p).

Alice → Bob: ga mod p

• Bob selects a secret integer b, then sends Alice (gb mod p).

Bob → Alice: gb mod p
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• Alice calculates (gb mod p)a mod p
• Bob calculates (gb mod p)a mod p

As a result, Alice and Bob receive the same value, namely (gb mod p)a mod
p = (gb mod p)a mod p, due to gab = gba. a, b and (gb mod p)a mod p serve
as Alice’s private key, Bob’s private key and the shared secret key between
Alice and Bob, respectively.

If the values of a, b and p were big enough, it should be difficult for Alice
to know Bob’s private key or for Bob to know Alice’s private key. However,
this key exchange protocol is vulnerable to a man-in-the-middle attack. In
this attack, an intruder Z intercepts Alice’s public value and sends his/her
own public value to Bob. When Bob transmits his public value, Z replaces it
with his/her own and sends it to Alice. Z and Alice thus agree on one shared
key that is different from the key shared between Z and Bob. After that, Z
is able to decrypt any messages exchanged by Alice or Bob, and even alter
them before re-encrypting with the appropriate key and delivering them to
the other party. This vulnerability has arisen because this protocol does not
authenticate the participants.

This example indicates the need for us to have some way to ensure that A
and B are indeed using each other’s correct public keys. Otherwise, such at-
tacks may damage any message sent using public-key technology. Fortunately,
a number of techniques have been developed to protect messages from man-
in-the-middle attacks, such as password and stronger mutual authentication.

Replay is one kind of attack in which a valid message or data is maliciously
repeated or retransmitted.

Suppose Alice requires Bob to prove his identity using a hashed password.
A possible replay attack is described below.

• Message 1 Bob → Alice: H (password)
• Message 1′ Z → Alice: H (password)

The intruder Z intercepts the password and retransmits it to Alice after the
exchange is over.

There are two primary ways to prevent replay attacks. One way is to
use session tokens - Bob can combine a one-time token from Alice with the
password.

• Message 1 Bob → Alice: H (token, password)

If two session tokens match, Bob is allowed to log in. In this case, the intruder
Z cannot replay the session token next time because Alice may use a new
session key.

Timestamp is another way of avoiding replay attacks. Synchronization is
important to keep the consistency of time of different parties. When Bob sends
a message to Alice, he includes the time broadcast by Alice in the message m.
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The message m is only believed to be valid if the timestamp is within an
allowable range of tolerance.

Denial of service (or DoS) is an attack on a computer system or network
that results in the excessive consumption of computational resources, damage
of configuration information, or disruption of connection. For example, the
consumption of memory and bandwidth, the malicious alteration of routing
information, and the disconnection of access service from users. A denial of
service attack does not usually give rise to the theft of information or other
security loss, however, a user or organization might not have access to a par-
ticular service they would normally expect to have. Sometimes it may cost
the user or company considerable time and money.

Interleave is an attack that uses several runs of the protocol to masquer-
ade their interactions. The Needham-Schroder public key protocol is used to
provide mutual authentication between A and B by secretly exchanging two
nonces:

• Message 1 A → B : {A, nA}Spb(B)

• Message 2 B → A : {nB, nA}Spb(A)

• Message 3 A → B : { nB}Spb(B)

At the first step, B is able to confirm the nA from A, but A has not been
convinced of B ’s identity. B then generates a nB and sends the encrypted
nB and nA to A. At the last step, B checks the nB is correct. This protocol
was analysed by BAN logic and has been believed to be secure. However,
the following interleave attack remains possible in the protocol. Let Z be an
intruder.

• Message 1′ A → Z : {A, nA}Spb(Z)

• Message 1′′ Z → B : {A, nA}Spb(B)

• Message 2′ B → Z : {nB, nA}Spb(A)

• Message 2′′ Z → A : {nB, nA}Spb(A)

• Message 3′ A → Z : {nB}Spb(Z)

• Message 3′′ Z → B : {nB}Spb(B)

A starts a protocol run with Z. However, Z uses the nA to initiate another
run with B rather than answering A. B responds with nB and encrypts it
using A’s public key. As Z cannot decrypt this encrypted message, he/she
just forwards it to A. A decrypts it and responds with encrypted nB using
Z ’s public key. Thus, Z now gets to know nB now. Eventually, B also obtains
the expected response nB from Z.

Message 1′′ and Message 2′, and Message 2′′ and Message 3′ are two inter-
leaved runs of the protocol conducted by Z. At the end of this authentication,
both A and B will think they share the nB and nA with Z. This attack is
beyond the assumptions of BAN logic. One solution is to link messages in a
run with chained nonces.
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Reflection is an attack of tricking the participant into answering his/her
own questions in a challenge-response protocol. Suppose there is a server S
to which users want to log on. The challenge-response is performed to au-
thenticate the users instead of sending a password through the open network.
Let Z be an intruder, k be a symmetric key shared by Z and S, and e be a
cryptographic function.

• Message 1 Z → S : { nZ}
• Message 2 S → Z : {e( nZ, k), nS}
• Message 3 Z → S : { nS}
• Message 4 S → Z : {e( nS, k), n ′

S}
• Message 5 Z → S : {e( nS, k)}
In the second message, S responds with his/her nonce nS. However, Z utilizes
nS to fake a new request. At the fourth step, Z obtains the encrypted nS and
sends it back to S in a later answer. As a result, this leaves the intruder Z a
fully-authenticated connection but the other session is simply abandoned.

Solutions would be to require the initiator Z initially to respond to chal-
lenges before the server S answers its challenges, or require the key to be
different between the two directions, or reject encrypted nonce nS that was
just sent out for client authentication.

Algebraic is a cryptographic attack that intends to break the underlying
cryptographic algorithms. Aside from the described logical attacks that utilize
the weakness in protocols, we should also be wary of the algebraic attack.
Without exception, every cryptographic algorithm has algebraic identities as
the consequence of its mathematical infrastructure. Some of them may be
already known, or unknown until now. Such identities may provide a good
opportunity for attackers to undermine the security of the protocol. Therefore,
it is necessary to take these identities into account to enable the modelling
framework to represent such identities.

Traffic analysis is the process that focuses on interpreting and inspecting
messages so as to deduce the information patterns in communication and
determine the source and destination of message traffic. No matter whether
or not encryption is used, this can be performed. It can be possible for an
observer to infer a great deal from the observed or even intercepted messages.

Traffic analysis is a key issue in computer security. An intruder can obtain
important information by monitoring. For example, an attack on the SSH pro-
tocol used timing information to deduce information about passwords [141].
The authors use hidden Markov models to study the timings between mes-
sages, and attempt to recover the password. Traffic analysis can be also used
for attack on anonymous communication systems, like Tor (anonymity net-
work). Murdoch and Danezis presented traffic-analysis techniques that allow
opponents with only a partial view of the network to infer which nodes are
being used to relay the anonymous streams [118].
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Regardless of the number of dedicated software systems that have been
developed to deal with this problem, they still lack the ability to measure the
degree of protection provided by these programs. It is not easy to evaluate
what level of security they are able to provide. Therefore, statistical techniques
should be integrated into such analysis due to the dependency of traffic anal-
ysis on statistical analysis. On the other hand, the possibility that intruders
may integrate data from multiple data sources to perform successful traffic
analysis should be considered.

2.3 Research into Analysis of Security Protocols

2.3.1 A Discussion of Formal Methods and Security Protocols

To begin with, it will help if we can clarify what we mean both by formal
methods and security protocols and the relationship between them.

A security protocol (or cryptographic protocol) is a protocol that applies
cryptographic methods to the performance of a security-related function, in-
cluding key distribution, principal authentication and secure data transport
over a network. A security protocol usually incorporates at least the follow-
ing aspects: key agreement or establishment; entity authentication; symmet-
ric encryption and message authentication; and reliable application-level data
transport. For example, Transport Layer Security (TLS) is a cryptographic
protocol employing the Diffie-Hellman key exchange that is used to secure web
(HTTP) connections. It has an entity authentication mechanism, based on the
X.509 system. Nevertheless, the network is usually assumed to be hostile, in
that a malicious intruder may read, modify and delete transmitted messages,
and may be able to impersonate or even control some principals. A robust
security protocol must be able to protect messages from these malicious at-
tacks and achieve its goals. The attacks on cryptographic protocols can be
classified into two categories: intuitive and non-intuitive. The former includes
the attacks dependent on properties of cryptographic algorithms, or on statis-
tical analysis of message traffic, or on some integrations of them. The latter
focuses on the attacks that are not obvious to a careful inspector. They do not
intend to utilize the subtle flaws in the underlying cryptographic algorithms
but simulate the above operations such as interception or masquerading in
any workable sequence. With the increasing complexity of cryptographic pro-
tocols, they can sometimes be verified formally on an abstract level.

Formal methods can be viewed loosely as a combination of an abstract
mathematical model of a system and corresponding requirements regarding
the correctness of the system, together with a formal proof to determine the
system has all the required properties that together make it functional and
useful. Actually, it is unrealistic to specify formally what ‘no defect’ means
for a system. All we can do is prove that the system does not contain any of
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the defects that we can imagine, and that it satisfies all of the requirements.
Formal verification has been widely used for cryptographic protocols since the
1980s.

There are roughly two approaches to formal verification. The first ap-
proach is logical inference. It depends on using a formal mathematical model
to reason about the system, usually using theorem proving sofware such as
the HOL theorem prover or Isabelle theorem prover. Usually, it is only par-
tially automated and is driven by the user’s understanding of the system to
verify. The second approach is model checking, which relies on a systematic
and always automatic exploration of all the mathematical model. Although
they do not offer a proof of security for the entire possible state space, they
provide a precise description of the conditions under which their conclusions
hold, and also give an effective procedure for validating them.

Current works in formal methods mainly formalize the security problems
in a discrete way. During the data exchange among a group of principals, it
is easily affected by malicious attacks in a hostile open network. An intruder
may perform any order of a finite collection of operations mentioned above,
such as intercepting data, tampering and masquerading data, encrypting and
decrypting data to make various attacks. Since many protocols are subject
to such attacks and most of them are not apparent upon inspection, the
formal analysis can assist us in avoiding them and ensuring the correctness
of security protocols by the use of rigorous analysis of all the possible paths
that an intruder could utilize.

The application of formal methods to security protocol analysis was first
mentioned in the analysis of key distribution protocols for communication
between two principals, such as Needham and Schroeder’s public-key proto-
col [2]. The first work in this area was undertaken by Dolev and Yao [44] who
developed a formal model where multiple executions of the protocol can be
implemented concurrently. Most of work on formal analysis for security pro-
tocols is extended or adapted from this model or some variant of it. However,
this still remained a fairly obscure field until the appearance of BAN logic by
Burrows, Abadi, and Needham [22]. As a result, this logic was widely applied
and resulted in many other logics to handle different types of problems in
security protocols. Formal methods have been used for reasoning about cer-
tain security-related properties or describing and reasoning about protocols
with emergent behaviour. Formal analysis for security protocols enables us to
identify weakness and hidden assumptions underlying security protocols. This
book aims to present fundamental techniques for formal methods in security
protocol analysis and some emerging issues in this area.
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2.3.2 A Brief Introduction to Protocol Abstraction

A security protocol usually uses cryptography to distribute messages, authen-
ticate the other party and protect data over an insecure network. It can be
defined as a set of transactions or traces. Each transaction consists of a series
of communication events, which are perhaps some interleaved protocol runs.
As described above, some fundamental security functions need to be incorpo-
rated during protocol runs. Every desirable security protocol should provide a
comprehensive introduction to the details with respect to authentication, mes-
sage delivery, encryption and decryption and so on. Thus, security protocols
are very suitable for rigorous analytical techniques, such as inductive defini-
tions. Theorem proving is good at defining properties of security protocols,
and model checking is an effective means of detecting attacks.

Security protocols have become an inseparable part of the formal method
community. They can be easily defined using semantics based on trace of
events, by which it is easy to formalize and explain a security protocol. The
application of formal methods to security protocol starts with the analysis of
key distribution protocols for communication between two principals. Need-
ham and Schroeder Secret-Key protocol was perhaps the first protocol to be
analysed using formal methods. It is a network authentication protocol and
enables principals to prove their identity to each other with the aid of a trusted
server. For example, Alice(A) wants to authenticate herself to Bob(B) using
a server S. She needs to tell the server she wants to communicate with Bob.
S generates KAB for the communication between Alice and Bob and another
key KBS for Alice to forward to Bob. Through two authentications that verify
the key KAB is held by them, Alice and Bob can trust this key and use it to
communicate with each other.

Two kinds of keys are applied in this protocol: private keys and long term
keys. The former is generated by the trusted server S and establishes a reliable
communication channel between A and B. The latter is used for communica-
tion between A and S and between B and S, respectively. The trust server
needs to maintain a number of long term keys if the number of principals
in a transaction is large. In that case, considerable communication and com-
putation burdens can rest on S and consequent failure may occur at these
bottlenecks. Nevertheless, the trusted server is just used when it is really nec-
essary to establish a new key for the communication between A and B. It is
unrealistic to generate new keys for each pair of principals in advance because
most of them may not be used at all.

A number of cryptographic algorithms can be used for generating those
keys. The strength of cryptography determines whether the keys are stronger
to cryptanalyse. Nevertheless, it is not our goal to discuss the details with re-
spect to the fundamental of cryptographic algorithms, but focus on abstract-
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ing them using logical methods and verifying security protocols by rigorous
reasoning.

A search of the Internet for the keyword ‘security protocol’, reveals a lot
of security protocols designed for different purposes. They can apply different
cryptographic algorithms and varied and complex authentication and autho-
rization to set up a secure channel of communication. Regardless of these dis-
crepancies from the details of security protocols, the abstraction of security
protocols becomes less discrepant and turns out to be analogous. Thus, the
relatively simple and well-known Needham and Schroeder protocol provides a
good example to help us understand the fundamentals of security protocols.
We will talk about more security protocols when discussing formal methods
for security protocol analysis in the following sections.

Suppose A, B and S represent Alice, Bob and a trusted server as before.
The protocol begins with a request from A to S, which indicates A wants to
communicate with B. Logical symbol → denotes the message is transmitted
from a principal(initiator) to another principal (responder).

Message 1 A → S : A, B, nA

Message 2 S → A: {B, KAB, nA, {KAB, A}KBS
}KAS

Message 3 A → B : {A, KAB}KBS

Message 4 B → A: {nB}KAB

Message 5 A → B : {nB − 1}KAB

Each line in the list can be viewed as a step in a transaction, which includes
the message delivered from the initiator to the claimed receiver. They are
tightly correlated with each other. No matter which step fails, the transaction
will not be able to be completed successfully. For convenience, we use some
simple notation to denote cryptography, such as KAB and KBS . However, in
reality, the detailed computation cannot be so simple to express. The nonces
nA and nB denote some unpredictable number and convince Alice and Bob,
respectively, that the received message is fresh. {X }K denotes encryption of
the value X with the public key K.

In the first step, Alice just wants to let the server S know that she wants
to communicate with Bob. The delivered message indicates the initiator, to
whom she wants to talk to, and supplies a nonce. S generates an encrypted
compound message which includes a new key KAB and an encrypted message
using a long term key KBS . Alice decrypts this message using the long term
key KAS , and knows the contents inside. She needs to check whether the value
of nA and Bob’s name are consistent with the nonce and the name she sent
out in the first step. The new key KAB is stored for further exchanges

The message {A, KAB}KBS
will be forwarded to Bob to gain his agreement

on the new key KAB. Bob decrypts the received message and knows the
request is initiated by Alice. He uses the obtained KAB to encrypt a new
nonce nB, and sends it back to Alice in message 4. Alice decrypts it to obtain
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nB. In the conventional way, she alters the value of nB by subtracting 1 and
sends it back to Bob, encrypted under KAB.

The above informal description gives an outline of this protocol. The utility
of the last two messages may, however, be unclear to some users. In messages
2 and 3, Alice and Bob know the new key KAB. They actually have to believe
in a remote server S because Alice cannot know what is inside {A, KAB}KBS

.
Therefore, it is unknown whether both Alice and Bob have agreed with the
common KAB. It is necessary to confirm this by messages 4 and 5. They in
fact assure each other that the other also knows KAB.

We observe that the trusted server is critical in the protocol. S must be
honest to issue the key KAB for Alice and Bob, and use reliable long term keys
to communicate with them. As a result, Alice and Bob will be confident that
KAB is supplied by the trusted server S and only for them. Furthermore, if a
message encrypted under KAB is received by Alice, it must have come from
Bob, and vice versa. However, this protocol relies on several ideal assumptions
that may give rise to subtle flaws in hostile environments. In a sense, the issues
in this protocol can be used for reference in analysing other security protocols.

Regardless of the generation of many security protocols for different pur-
poses, a number of subtle flaws have been often reported in the literature
documents. To assure safe message exchanges, the protocols must be sure
that intruders cannot undermine the transmitted messages by virtue of the
vulnerabilities of protocols that can be exploited. This demands the correct-
ness of protocol design and robust cryptographic algorithms. Nevertheless,
here we will not discuss the details of cryptographic algorithms but just some
properties of them, such as symmetric encryption and asymmetric encryption,
and hash function, that can interact with security protocols. This protocol ob-
viously depends on the assumption that Alice and Bob should be honest and
never disclose their messages to a intruder or compromise their keys. Notice
that if Bob tells the intruder his key KBS , the intruder can generate a false
KAB and message 3. The secrecy or authentication of messages encrypted un-
der KBS will be lost. Furthermore, a more dangerous attack can be performed
by the intruder in league with a certain number of dishonest principals.

In message 1, there is nothing to protect the secrecy of this message. It is
possible for an intruder to know that Alice wants to talk to Bob. Also, the
intruder can alter the value of nA. As a result, the integrity of the message
cannot be protected in this step. This may provide an opportunity for a denial
of service because the trusted server S does not agree with the altered message
by contrast with the record.

Notice that Alice has never explicitly declared her intention to communi-
cate with Bob. Lowe [97] presents an attack on the Needham and Schroeder
protocol. The attack allows an intruder to impersonate another agent Alice
to set up a false session with Bob. Lowe also proposed a variation that simply
includes the identifier of Bob so as to verify that Bob wishes to communicate
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with Alice. However, encryption with Alice’s public key may not provide this,
but is a way to provide the confidentiality service to the message sender. It
seems that most analysts have assumed that inclusion of the nonce, which Al-
ice sent confidentially to B, is sufficient to offer authentication. Unfortunately
this is really not true, even with the most well known public key encryption
algorithms.

In order to allow the receivers to authenticate the received messages, the
encryption function needs to act like a message authentication code (MAC)
which ensures that the message was written with knowledge of a shared se-
cret. The above attack is probably prevented by including strict formatting in
the RSA encrypted messages, such as the RSA Encryption Standard PKCS
#1 [132]. Such formatting is intended to guarantee that the encrypting agent
must be conscious of the whole plaintext in order to generate a valid cipher-
text, such as the encryption of a shared nonce in the Needham-Schroeder
protocol. Notice also that the attack is not a ‘typing’ attack (stream cipher)
that converts ciphertext from and to plaintext, one-bit typing tags each time
would still allow the attack to succeed with high probability. Thus, block
cipher rather than stream cipher is more appropriate for encryption in this
protocol.

The protocol designers may need to take into account more security mech-
anisms such as enhanced cryptographic algorithms to establish a secure com-
munication channel between agents. Some recent developments of encryption
techniques overcome some of the vulnerabilities in conventional cryptography
and provide more protection on transited messages. We will explain them step
by step in the following context. This protocol illustrates the general role of
security protocols and their implementation in an abstracted way. It focuses
on achieving authentication between two agents, but more security goals can
be realized based on this protocol. From this protocol, we observe that encryp-
tion techniques play a central role in security protocols, such as encryption
for secrecy or integrity, MAC for authentication, nonce for freshness, and so
on. Thus, we will give an overview of the cryptographic fundamentals below.

2.3.3 A Classification of Approaches for Protocol Analysis

There have been considerable efforts in the field of the formal analysis of
security protocols, as shown in Figure 2.4. Usually, the analysis consists of
the following procedures:

• Formal modelling and specification of security protocols
• Specification of required security properties
• Verification of the properties
• Generation of response messages
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Fig. 2.4. Verification of security protocols

In the past two decades, there have been considerable efforts devoted to the
formal analysis of security protocols, from which a number of approaches were
extended or adapted.

Attack-Construction Methods. Dolev and Yao [44] presented a basic
model for state-machine approach. Under their model an intruder is in full
control of the network being able to read, modify, create, and delete messages.
Effectively, the intruder is using the system being attacked as a machine to
generate words (messages). The words follow some rewrite rules based, for
example, on the properties of symmetric encryption. The intruder’s task is
to discover a word that should have been secret. Thus, the protocol security
problem is transformed into a search based on a term-rewrite system. This
approach was used to develop analysis algorithm for some restricted protocol
classes.

Two models were then derived from the work of Dolev and Yao; the cascade
protocol models, in which the users can apply cryptographic operations in
several layers to form messages, and the name-stamp protocol models in which
the users are allowed to append, delete, and check names encrypted together
with the plaintext. The main drawbacks of the Dolev-Yao model are its failure
to model the principals’ ability to remember state information between states,
and the fact that it can only detect protocol deficiencies [65].

Meadow’s NRL Protocol Analyser [109, 111] is a prototype verification
tool, written in Prolog, that aids in the verification of security properties of
cryptography protocols and in the detection of security flaws. It uses the same
approach as the term-rewrite model of Dolev-Yao, but treats a protocol as a
machine for producing words, beliefs, and events. The NRL Protocol Analyser
uses a backward search strategy to construct a path from a specified insecure
state to an initial state. However, it is not easy to keep the state space workable
since drastic simplifying assumptions are required.

Inference-Construction Methods (see above, Section 1.4.5). BAN logic,
presented by Burrow, Abadi and Needham [22] has been widely used for the
analysis of authentication protocols. BAN logic of belief belongs to the class of
KD45 modal logics which in practice means that any fact is only a belief and
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does not need to be universal in time and space. It assumes that authentication
is a function of integrity and freshness, and uses logical rules to trace both of
those attributes through the protocol. There are three phases for the analysis
of a protocol using BAN logic. The first step is to express the assumptions
and goals as statements in a symbolic notation so that the logic can proceed
from a known state to one where it can ascertain whether the goals are in
fact reached. The second step is to transform the protocol steps into symbolic
notations. Finally, a set of deduction rules called postulates are applied. The
postulates should lead from the assumptions, via intermediate formulae, to
the authentication goals.

BAN logic has been a success. It has found flaws from several protocols,
such as Needham-Schroeder [120] and CCITT X.509 [79]. It has uncovered
redundancies in many protocols, such as Kerberos [116] and Otway-Rees [125].
Many papers make claims about their protocol’s security based on this logic.

Inevitably, criticisms on various features of the BAN logic have been pub-
lished. According to Liebl, it is difficult to prove properties of the BAN logic,
such as completeness, and the logic does not take into account the release of
message contents and the interaction of the runs at different times of the same
protocol [94]. Thus, a successful but rather complicated approach called GNY
logic [60, 62] was proposed, which increases the range of BAN logic.

GNY logic aims to analyse a protocol step-by-step, making explicit any
assumptions required, and drawing conclusions about the final position it
attains. This logic offers important advantages over BAN logic. The GNY
approach [63] places a strong emphasis on the separation between the content
and the meaning of messages, which increases consistency in the analysis
and introduces the ability to reason at more than one level. In GNY logic,
principals can include the message data which they do not believe in. However,
GNY logic addresses only authentication and is much more complicated and
elaborate than other methods as it has many rules which have to be considered
at each stage [65].

BGNY logic, introduced by Brackin [14] is an extended version of GNY.
This belief logic is used by software that automatically proves the authenti-
cation properties of cryptographic protocols. Similarly to GNY logic, BGNY
addresses only authentication. However, BGNY extends the GNY logic by
including the ability to specify protocol properties at intermediate stages and
being able to specify protocols that use multiple encryption and hash oper-
ations, message authentication codes, hash codes as keys, and key-exchange
algorithms.

SvO [150], presented by Syverson and van Oorschot is designed to capture
the features of extensions and variants of four logics, namely BAN, GNY,
AT [2], and vO, in a single unified framework. In addition, the authors provide
model-theoretic semantics with respect to which the logic is sound. The SvO
logic was intended to encompass the reasoning of these other logics while
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providing a rigorous understanding of its formal expressions. The SvO logic
is considered to be simpler to use and more expressive than any of the logics
from which it is derived.

In addition, Kailar [82] has proposed a special purpose logic, which is used
for the analysis of secure e-commerce protocols that require accountability.
This logic is more suitable for the analysis of accountability than the belief
logics. In the same framework, an authentication logic presented by Kessler
and Neumann [85], based on the AUTLOG [86] semantics, can analyse the
accountability of transactions in the framework of electronic commerce pro-
tocols.

Proof-Construction Methods. As mentioned above, inference-construction
methods do not address secrecy, often lack clear semantics, and it is some-
times difficult to say exactly what a belief-logic proof actually proves. On the
other hand, attack-construction methods may have to search spaces that grow
exponentially with the size of the protocol, so the time and space they require
can easily exceed all available resources.

In order to confront these shortcomings, Bolignano [9] has proposed an
approach targeting the generation of human-readable proofs. To achieve this
goal, specific properties of the problem are used to formalize the requirements
and simplify the proofs.

Paulson [128, 129] has independently developed a similar approach synthe-
sizing the inference-construction method idea of protocol message guarantees
and the attack-construction method notion of event. Paulson defines protocols
inductively as the set of all possible event traces. This approach allows the
modelling of both attacks and key losses.

Within the same framework, Schneider presents a general approach for
the analysis and verification of authentication properties in the language of
CSP [137]. The focus of this research work is the development of a specific
theory targeted towards the analysis of authentication protocols and built on
top of the general CSP semantic framework.

Fabrega, Herzog, and Guttman introduced the notion of strand space [49,
50]. They presented a model and a set of proof methods for cryptographic
protocols along the line of the NRL Protocol Analyser, Schneider’s work, and
Paulson’s inductive definitions. In conjunction with the aforementioned for-
malism the authors use the concept of ideals to prove bounds on a penetrator’s
capabilities independently of the security protocol being analysed.

Other Related Approaches. Recently, proof-construction approaches have
been developed to avoid the exponential searches of attack-construction ap-
proaches by replacing them with theorems regarding these searches. Also,
this method complements the Inference-construction methods because it is
based on the problem formalization via hypotheses and authentication prop-
erties, but relies on problem-specific properties and a specification at a bet-
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ter level of precision. Proof-construction methods formally model the actual
computations performed in protocols and prove theorems about these com-
putations. The representative works were presented by Bolignano and Paul-
son [9, 15, 128, 129], and Brakin [17].

The above techniques mainly focus on the analysis of cryptography proto-
cols and authentication protocols. There have been attempts to model more
realistic protocols, such as the protocols developed by CyberCash. Meadows
and Syverson [113] have designed a language for describing the SET specifi-
cations [138, 139, 140], but have left the actual analysis to future researchers.
Bolignano [10] has applied his approach to analyse some cases of electronic
payment protocols, such as C-SET and SET.

Limitations of Existing Approaches. As already described, a number of
methods have been developed for the analysis of security protocols. However,
some subtle flaws can still be found from actual transactions [97, 98, 120]
owing to inherent limitations in existing formal methods.

1. The attack-construction approaches suffer from a big state space and are
inefficient in detecting attacks on complicated secure transaction proto-
cols.

2. The inference-construction approaches are still too complicated to verify
security protocols. For example, BAN logic requires a large number of
assumptions where a secret remains secret during the execution of proto-
cols; and the GNY logic contains many rules that have to be considered
at each stage.

Other works emphasize a particular aspect of security protocols. Among them,
attempts to verify e-commerce protocols are not as mature as those used for
authentication protocols and cryptography protocols. Moreover, the afore-
mentioned methods have been incompetent to deal with emerging issues of
security protocols, such as the properties of fairness and liveness in financial
transactions, and new type of threats, such as denial of service, traffic analysis
and collusion attack. Moreover, it is not easy to handle the problems using
the conventional analysis because they are varied, complex, and sometimes
even covert. To our knowledge, existing methods cannot cover this problem
in many cases.

In contrast to the above methods, in this book we propose ENDL, which
overcomes some of the limitations. It considers the possibilities of ‘message
lost’ and ‘host crash’ environment. Furthermore, ENDL is able to deal with
the practical financial circumstances and accommodate some potential attacks
such as replay attacks and collusion attacks.

The existing verifications were mainly implemented by theorem proving.
Recently, a number of works have been put forward for automating the veri-
fication of security protocols.
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2.4 Attack-Construction Approach

This approach focuses on developing a formal model based on the algebraic
term-rewriting properties of cryptographic systems. It was introduced by
Dolev and Yao [44], from which a number of relevant works were developed,
either extending it or applying the same concept to varied types of issues in
cryptographic protocols, such as the work of Syverson [149], Meadows [109]
and Woo & Lam [160]. Automated analysis has been developed in the recent
application of this approach. Thus, a user is able to query the system for
known attacks.

This approach usually involves an analysis of the reachability of certain
system states. In this regard, it is similar to the approaches that aim to develop
expert systems. However, this approach tries to present that an insecure state
cannot be reached, but the expert systems start with an insecure state and
attempt to show that no path to that state could have originated at an initial
state.

2.4.1 Approaches by Dolev and Yao

There have been considerable efforts to develop public key encryption to guar-
antee secure network communication. Although they are effective against the
passive eavesdropper, an improperly designed protocol could be vulnerable
to an active attacker, one who may impersonate another user and may mod-
ify or replay the message [44]. This issue was pointed out by Needham and
Schroeder, in what is probably the first mention of formal methods as a possi-
ble tool for cryptographic protocol analysis [120]. However, the first work that
was practically done in this area was addressed by Dolev and Yao, and slightly
later by Dolev, Even and Karp [43], who developed a set of polynomial-time
algorithms for determining the security of a restricted class of protocols.

Dolev and Yao proposed the first algebraic model for the security of prop-
erties. They define the precise mathematical models according to the basic
assumption on the system that they want to model. In the Dolev-Yao term-
rewriting model [44], it is assumed that there is an intruder who is able to read
all message traffic, modify and destroy any message traffic, and perform any
operation (such as encryption or decryption) that is available to a legitimate
user of the protocol. It is assumed that there is some set of words (messages),
such as encryption keys, possessed by honest principals, that have been en-
crypted, that is unknown to the intruder. The intruder can use the system
being attacked as a machine to generate words. The intruder’s goal is to dis-
cover a word that should have been secret. The protocol can be regarded as an
algebraic system manipulated by the intruder because any message received
by an honest principal can be thought of sending by the intruder.
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1. In a perfect public key system
• the one-way functions used are unbreakable;
• the public directory is secure and cannot be tampered with;
• everybody can gain access to all the encryption functions Ex;
• only X knows decryption function Dx.

2. In a two-party protocol, only two parties who wish to communicate are
involved in the distribution of secrets; the third party for authentication
in encryption or decryption is unnecessary.

3. In a uniform protocol, the coherent format is applied by each pair of
principals who wish to communicate.

4. Assumptions with respect to an attacker:
• He can obtain any message passing through the network.
• He is a legitimate user and thus able to initiate a communication with

any other user.
• Any user A may have the opportunity to become a receiver to any

other user B.

Dolev and Yao modelled some classes of protocols, reasoned about these pro-
tocols and proved some interesting properties of these protocols. Two models
were developed.

1. Cascade protocol model, in which the users can apply only the public key
encryption-decryption operations (EX ,DX) to form messages, in which X
is a user name. several layers of these operators may be applied.

2. Name-stamp protocol model, in which the users are additionally allowed
to append (iX ), delete (d), and check (dX) names encrypted together
with the plaintext. Thus, Name-Stamp Protocols are a generalization of
the above Cascade Protocols.

Cascade protocol. Operators for Cascade Protocols consist of encryption
EX and decryption DX . Suppose X and Y are two parties in the protocol.
We have

• X operates strings of EX , EY and DX .
• Y operates strings of EX , EY and DY .

As a consequence, a protocol can be represented by a series of strings of which
X operates OX and of which Y operates OY . Thus, a cascade protocol can
be defined as

1. X → Y : <O1
X>M

2. Y → X : <O1
Y><O1

X>M
3. X → Y : <O2

X><O1
Y><O1

X>M

The strings can be continuously operated by X and Y. Let γ be a string of
operators over encryption function E and decryption functionD and let γ be
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the reduced form of γ after applying algebraic laws EXDX = DXEX = 1 in
terms of the public key cryptosystem.

To illustrate this, Let OX = EY DX be the strings that X operates, and
let OY = EXDY EXEXDY be the strings that Y operates. The protocol is
defined as.

1. X → Y : EY DXM
2. Y → X : EXDY EXEXDY M

Let N(X,Y ) be the notation of reduced form in terms of the algebraic law
mentioned above. After reduction, we have N1(X,Y ) = EY DX and N2(X,Y )
= EXDY EX .

Let Σ be the alphabet of operator symbols and Σ� be the set of all strings
over Σ including the empty word λ. Let Z be an adversary (or intruder), let
Σ(Z ) = E ∪ {DZ}, let Σ(X ) be all strings which X operates, and let Σ(Y )
be all strings which Y operates. Based on the above definition, a cascade
protocol can be determined as secure or insecure according to the following
conditions.

• A protocol is insecure if there exists some string γ in {Σ(Z ) ∪ Σ(X ) ∪
Σ(Y )}� such that for some N i(X, Y ), γNi(X,Y) = λ;

• A protocol is secure, otherwise.

We can use one example to illustrate this, in which two parties A and B are
included. Usually, the protocol is defined as.

1. A → B : (A, EB(M ), B)
2. B → A: (B, EA(M ), A)

Usually, the operations involved can be represented as EXDY EY M without
intruder. However, the protocol can be broken by an intruder Z.

1. A → Z (B): (A, EB(M ), B)
2. Z → B : (Z, EB(M ), B)
3. B → Z : (B, EZ(M ), Z )
4. Z knows M by decrypting EZ(M )

The intruder Z intercepts a message from A at the beginning, and pretends
to be A to send the message to B. B will think this message is from A,
and will send a message back to Z. This procedure can be represented as
DZEZDY EY M due to the intruder Z.

Name-stamp protocol. Operators for Name-Stamp Protocols are com-
posed of the following operations:

• encryption EX

• decryption DX

• append iX
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• name-match dX

• delete d.

Based on the properties of the public key cryptosystem and the name-stamps
we have the following algebraic laws of the reduction/rewriting system:

• EXDX = DXEX = 1
• dX iX = diX = 1

Suppose a, b and c are three elements of Σ. From the observation, if ab = bc
= 1, then a = c. Let a string γ = head(γ)tail(γ), in which tail(γ) represents
a suffix of n bits. Thus, we have

• iXγ = γX
• dXγ = head(γ) if tail(γ) = X
• dγ = head(γ)

In particular, there is a constraint on the dX operation. That is, when dX

is applied, the transmission will not proceed unless the identity of user X
is confirmed, namely tail(γ) = X. Consequently, for any text γ transmitted
between normal users X and Y, there should be no dX or dY remaining after
the algebraic laws are applied.

Let Z be an adversary (or intruder), let Σ(Z ) = {DZ} ∪ {I A, EA, DA,
d all A}, let Σ(X ) be all strings which X operates including new operations,
and let Σ(Y ) be all strings which Y operates including new operations. In the
same way, we can decide whether a name-stamp protocol is secure or insecure
in terms of the following conditions.

• A protocol is insecure if there exists some string γ in {Σ(Z ) ∪ Σ(X ) ∪
Σ(Y )}� such that for some , γNi(X,Y) = λ;

• A protocol is secure, otherwise.

To illustrate this, we use a brief example including two parties A and B. The
protocol is defined as.

1. A → B : (A, EB(EB(M )A), B)
2. B → B : (B, EA(EA(M )B), A)

Suppose the normal operations by X and Y without intruder and the oper-
ations by X and Y along with intruder Z are represented by α(X, Y ) and
αZ(X, Y ), respectively. We have

1. α(X, Y ) = {EY iXEY }
2. αZ(X, Y ) = {EX iY EXDY dXDY }

Thus, we can obtain two corresponding reduced forms in terms of the algebraic
laws mentioned above.
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1. N1(X,Y ) = EY iXEY

2. N2(X,Y ) = EY iY EY

Let L be the context-free language of all possible protocol traces of the Ping-
Pong protocol that can be reduced by the cancellation rules to the empty
word λ. Let LZ be the regular language of all possible attacks. In essence,
the security problem of the Ping-Pong protocol can be transferred to the
question of whether the intersection of a regular language LZ and a context-
free language L is non-empty, namely LZ ∩ LZ �= ∅. For the Ping-Pong”
protocol by Dolev, Even and Karp, there exists a security checking algorithm
whose input are the generic cancellation rules and the protocol. The time
complexity is O(n3), in which n is the length of the input, and the space
complexity is O(n2m), in which m is the length of the context-free grammar
G such that L = L(G) and n is the number of states of the non-deterministic
finite automaton A such that LZ = L(A).

However, it was soon discovered that loosening the restriction on the proto-
cols even slightly can make the security problem undecidable, which prevents
the work from going further. Regardless of its limitation, Dolev and Yao’s
work was still significant and enables the definition of a formal model of an
environment where a set of protocols instead of an individual protocol can
be running simultaneously. Most of the later work on the formal analysis of
cryptographic protocols has been developed from this method.

2.4.2 NRL Protocol Analyser

Meadows’s NRL Protocol Analyser [109, 111] uses the same term rewriting
properties of protocol specifications as Dolev-Yao, and is able to assist either
in the verification of security properties of cryptographic protocols or in the
detection of security flaws. Unlike the Dolev-Yao model, which treats a pro-
tocol as a machine for producing words, the NRL Protocol Analyser treats
a protocol as a machine for producing not only words, but also beliefs and
events. Each protocol participant includes a set of beliefs in a NRL model.
These beliefs are generated or altered as the result of receiving messages com-
posed of words, while messages are sent based on both beliefs and messages
received. Events show the state transitions in which new words are created and
beliefs are altered. Consequently an intruder who controls the dissemination
of messages can use the protocol to generate words, beliefs, and events.

The NRL Protocol Analyser has been successfully applied to locate a se-
ries of previously unknown flaws in a number of protocols [21, 145], and to
demonstrate flaws that were already known in the literature [84]. It uses a
backward search strategy to construct a path from a specified insecure state
to an initial state. The NRL model aims to prove that a protocol is secure
by constructing a single path using an arbitrary number of protocol rounds
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thereby working in an infinite state space. The main drawbacks of the current
implementation are listed below

• Some drastic simplifying assumptions to keep the state space workable.
• As with most rule-rewrite systems, it is not clear how well the system

adjusts as more complicated algorithms will need to be expressed by an
increasing set of rules.

• The generation of lemmas stating that infinite classes of states are un-
reachable: these have to be proved by hand.

Syverson and Meadows then defined a formal language for specifying and
reasoning about cryptographic protocol requirements by developing the NRL
protocol analyser [149]. The analyser is used as a model checker to assess
the validity of the formulae that make up the requirements. In this formal
language, three specific notations are applied.

• → represents the standard condition.
• ∧ represents conjunction.
• � represents a temporal operator meaning at some point in the past.

It assumes that principals can keep track of rounds of protocols from their
perspective via local round numbers. The following actions are defined.

• accept(B, A, Mes, N ) indicates that B accepts the message Mes as from
A during B ’s local round N.

• learn(Z, Mes) indicates the intruder Z learns the word Mes.
• send(A, B, (Query, Mes)) indicates that the A sends B Mes in response

to query Query.
• request(B, A, Query, N ) indicates B sends query Query to A.

Based on the above constructs and actions, the requirements can be defined
by a conjunction of statements. This will facilitate the application of the NRL
Protocol Analyser. For example:

Requirement 1

• ¬(�accept(B, A, Mes) ∧ learn(Z, Mes))
• accept(B, A, Mes, N ) →
�send(A, B, (Query, Mes)) ∧
�request(B, A, Query, N ))

Requirement 1 contains two conditions, and both of them must hold. The
former represents that B accepted message Mes from A in the past and the
intruder Z did not learn Mes in the past. The latter represents that if B
accepted message Mes from A in B ’s local round N, then A sent Mes from A
to B in answer to a query at B ’s local round N.
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In some cases, it is perhaps unnecessary that A sends the message in
response to B ’s query, only after B ’s query. The relaxation of this requirement
can be captured by the omission of the Query from the send and request
actions. Thus we have

Requirement 2

• ¬(�accept(B, A, Mes) ∧ learn(Z, Mes))
• accept(B, A, Mes, N ) →
�send(A, B, (Mes)) ∧
�request(B, A, N ))

Alternatively, it may be required that the messages from A and B are recent.
In that case, B will not accept a message that arrives too late after he requests
it or after A sends it. This can be defined by the following requirement.

Requirement 3

• ¬(�accept(B, A, Mes) ∧ learn(Z, Mes))
• accept(B, A, Mes, N ) →
�send(A, B, (Mes)) ∧ �request(B, A, N )

• accept(B, A, Mes, N ) →
�send(A, B, (Mes)) ∧ �request(B, A, N )

• accept(B, A, Mes, N ) →
�send(A, B, (Mes)) ∧ ¬(�time out(B, N )) ∧
¬(�time out(A, N ))

The notation time out is used to control the currency of messages. The NRL
distinguishes the honest principal from dishonest principals. Correspondingly,
an honest principal and a dishonest principal can be represented by user(A,
honest) and user(A, dishonest), respectively. And a user who may be honest
or dishonest can be represented by user(A, Y ), in which Y means a variable.
Syverson and Meadow provide a complicated requirement to represent that
an honest B accept a message as coming from an honest user A only if it was
never previously accepted by an honest user.

Requirement 4

• ¬�accept(user(B, honest), user(A, honest), Mes) ∨ ¬�learn(Z, Mes)
• accept(user(B, honest), user(A, honest), Mes, N ) → �send(user(A, hon-

est), user(B, honest), Mes) ∧� request(user(B, honest), user(A, honest),
N )

• accept(user(B, honest), user(A, honest), Mes) →
¬�(accept(user(C, (honest)), user(D, Y ), Mes))
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The variable Y means that the message must not have been previously ac-
cepted by any user irrespective of his honesty.

The actions in the requirement are actually transitions from one state to
another. This can be represented by ordered pairs of the state of the form (s,
s ′), where s indicates the state before the action and s ′ indicates the state
after the action. In particular, st means the state at the time t. A state space
S consists of a set of states, and a trace σ is a sequence of elements of S.

A model is applied to define the satisfaction relationship between a formula
and a quadruple, <S, I, σ, t>, in which I is an interpretation of atomic
formulas. Suppose α is a formula. <S, I, σ, t> |= α represents that α is true
at <S, I, σ, t>, in which |= is the relationship between models and formulae.
More details of this satisfaction relationship can be found in the paper [149].

The model used by NRL is an extension of the Dolev-Yao model. It is
assumed that an intruder has the ability to read all message traffic, destroy
and alter messages, and create his own message. Dishonest users are modelled
as intruders. Thus, they are not specified separately. The functions lfact()
represents a set of learned facts, and intruderknows() represents the lfacts()
known by the intruder.

Let [ ] be empty list. Suppose the action (s, s ′) represents user A attempt-
ing to initiate a communication with B during local run N at time t. We will
obtain different results in state s and in state s ′.

• in state s, lfact(user(A, honest), N, init comm, t) = [ ]; and
• in state s ′, lfact(user(A, honest), N, init comm, t+1) = [user(B)]

Certainly, the value of lfact would also be [ ] at any time before t.
Similarly, two actions are associated with intruder knowledge. Let W be

a message and let (s, s ′) be ordered pairs of state as above. Suppose A sends
a message W to B at time t1, and the intruder intercepts W at time t2. In
the similar way, the results of lfact in different states can be represented as

• in state s, lfact(user(A), N, send to B, t) = [ ]; and
• in state s ′, lfact(user(A), N, send to B, t+1) = [W ]

The intruder gains knowledge in two ways. One way is given by the change
of (s ′, s ′′), and the second way is to do some available internal operations on
things he already knows. Let w be some n-ary operations that the intruder
can do. Thus we have

1. in state s ′′, intruderknows(t1) = intruderknows(t2) ∪ {[W ]}; and
2. intruderknows(t2) = intruderknows(t1) ∪ {w(W 1, · · · , W n)}

where t1 and t2 are global times and correspond to A’s local time t and
t+1, respectively. intruderknows() can be viewed as the lfact() learned by the
intruder.
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Thus, a protocol can be defined by the above actions and constructs. Then,
a set of lfact S is defined, in which S can include a potential attack by an
intruder. The analyser then decides whether the set S can meet the require-
ments of the protocol. If so, it indicates a possible attack is identified.

A specification in the NRL analyser contains four steps. The first step
defines the transition rules for the actions of honest principals. The second
step specifies the operations that are available to the honest principals and
possibly to the intruder, such as encryption and decryption. The third step
defines the atoms that are used as the basic building blocks of the words in
the protocol. The last step defines the rewrite rules obeyed by the operations.

A transition rule consist of three parts. The first part describes the condi-
tions that must hold before the rule can fire, including the words the intruder
must know, the values of the available lfacts and any constraints on the lfacts
and words. The second part gives the conditions that hold after the rule fires
according to the words learned by the intruder and any new values by lfacts.
The final part describes an event statement, including the name of relevant
principal, the number of the protocol round, the event and the value of the
principal’s counter. An example of transition rule is:

If:
count(user(B, honest)) = [M ],
lfact(user(B, honest), N, recwho, M ) = [user(A, Y )],
not(user(A, Y ) = user(B, honest)),
then:
count(user(B, honest)) = [s(M )],
intruderlearns([user(B, honest),
rand(user(B, honest), M )],
lfact(user(B, honest), N, recsendsnonce, s(M )) =
rand(user(B, honest), M )]
EVENT :
event(user(B, honest), N, requestedmessage, s(M )) =
[user(A, Y ), rand(user(B, honest), M )].

This rule describes the sending of a nonce from an honest principal B to
another principal A whose honesty is unknown. In this rule, there are two lfacts
including recwho and recsendsnonce. The former is used to keep the name of
the user B is communicating with, and the latter indicates the random nonce
that B sends to A. Eventually, the event statement requestedmessage keeps the
words used in this rule, including the name of user A and the random nonce.

In addition to transition rules, the rewrite rules are also defined to re-
duce words to simple words. An example of a rewrite rule that describes the
encryption with public key and private keys, respectively.

• pke(privkey(X ), pke(pubkey(X ), Y )) ⇒ Y
• pke(pubkey(X ), pke(privkey(X ), Y )) ⇒ Y
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It is the purpose of the NRL Protocol Analyzer to show that a given protocol
specification meets its requirements. However, this cannot ensure that the
protocol is secure. This analyser thus can be used as a tool and combined
with other tools, to constitute a proof that the protocol is secure.

2.5 Inference-Construction Approach

Most of the early work based on the Dolev-Yao model or some variant used
some types of state exploration technique, in which a state space is specified
and then explored by the tool to determine if there are any paths via the
space corresponding to a successful attack by the intruder.

2.5.1 BAN Logic

BAN logic, developed by Burrows, Abadi and Needham [22], uses a different
approach from that of the state exploration tools. It is a logic of belief, which is
composed of a set of modal operators describing the relationship of principals
to data, a set of possible beliefs that can be held by principals, and a set of
inference rules for inferring new beliefs from old ones.

In the BAN logic of belief, any fact is usually regarded as a belief. Authen-
tication is assumed to be a function of integrity and freshness. It uses logical
rules to trace both of those attributes through the protocol. The analysis of
a protocol by BAN logic usually consists of three main steps.

• Firstly, the assumptions and goals are expressed as statements so that the
logic can proceed from a known state to one and see whether the goals are
in fact reached.

• Secondly, the protocol processes are transferred into symbolic notation.
• Finally, a collection of inference rules are applied. The inference rules

should lead from the assumptions and intermediate formulae, to the au-
thentication goals.

Intuitively, there are the following assumptions in the logic.

• If A has sent B a message m1 that A has never used for this purpose
before and if A subsequently receives another message m2 that depends
on knowing m1, then A believes that m2 is recently originated by B.

• If A believes that a key K is shared only by him and B, and A sees a
message m encrypted with K, then A believes that message m comes from
B to A.

• If A believes that K is B ’s public key, then A should believe that any
message can be decrypted with K comes from B.

• If A believes that only A and B know m, then A should believe that any
encrypted message A receives containing m comes from B.
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The only propositional connective is conjunction, denoted by a comma. In the
logic, conjunction is treated as sets with properties such as associativity and
commutativity. In addition to conjunction, the following constructs are used
in the logic.

• P believes X. P believes X or P is entitled to believe X.
• P sees X. A message containing X was sent to P, who can read and repeat

X.
• P said X. At some time, P sent a message that includes X, but it is

uncertain when the message was sent.
• P controls X. P is an authority on X and should be trusted on this mat-

ter. An example is a server which is often trusted to generate encryption
keys properly.

• Fresh(X ). That is, X has not been sent in a message at any time before
the current run of the protocol. This is defined to be true for nonces, that
is, expressions generated for the purpose of being fresh.

• P K↔ Q. P and Q may use the shared key K to communicate. The key
K will never be discovered by any principal except P or Q, or a principal
trusted by either P or Q.

• K�→ P. P has K as a public key. The matching secret key, K−1, will never
be known by any principal other than P or a principal trusted by P.

• P
K
� Q. The formula X is a secret known only to P and Q, and the

principal they trust. X can be used to prove their identities to one another.
• {X }K. This represents the formula X encrypted under the key K. The

originator of X is often omitted, and it is assumed that each principal is
able to recognize and ignore his own messages.

Logical inference rules are formed from these basic constructs. The BAN logic
is composed of a very concise, intuitive set of rules, which made it easy to use.
Even so, as the BAN paper demonstrated, it was possible to use the logic to
detect serious flaws in protocols. The main logical inference rules used in the
logic are listed below.

1. The message-meaning rules. This rule is used to derive beliefs about the
origin of messages. For shared keys, the rule is described as

P believes P K↔ Q, P sees {X}K
P believes Q said X

This represents that if P believes the encrypted key K is shared between
Q and P and sees X is encrypted by K, then P believes that Q once said
X. It assumes that P did not send the encrypted message. Thus, if the
originator of this message is from R, it requires R �= P. In the similar
manner, the logic defines the inference rules with respect to public keys
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and shared secrets. All of them actually attempt to interpret different
kinds of messages and derive beliefs about the message origin from them.

2. The nonce-verification rule. It represents that a message is recent and still
believed by the sender himself.

P believes fresh(X), P believes Q said X

P believes Q believes X

That means that if P believes X was uttered in the present and that
Q once said X, then P believes that Q believes X. This rule reflects, in
an abbreviated way, the practice of using challenges and responses for
authentication. Nevertheless, X must be plaintext rather than cipherext.

3. The jurisdiction rule. This shows that if P believes Q has authority over
X then P believes Q in the truth of X.

P believes Q controls X, P believes Q believes X

P believes X

4. The see rule. If a principal P sees a formula, then he should also see its
components. In some cases, the necessary key is required. An example is
given below, and many other such rules can be see in BAN logic.

P sees(X,Y )
P sees X

5. The fresh rule. If the formula X is fresh, then any formula that contains
X is fresh.

P believes fresh(X)
P believes fresh(X,Y )

Idealized protocol. A security protocol can be idealized, according to these
inference rules. In contrast to the informal protocol description that is often
ambitious, the logic is more appropriate for formal analysis. Therefore, we can
transfer each protocol step into an idealized form. For example,

A→ B : {A,Kab}Kbs

In this message in informal form, A tells B who knows the key K bs, that K ab

is the key to communicate with A. This step can be idealized as

A→ B : {A Kab↔ B}Kbs

In the idealized form, some cleartext messages are removed as they can be
intercepted by intruders and do not contribute to the beliefs of the recipient.

BAN logic has been successfully used to discover flaws or redundancies
in many protocols, such as Needham-Schroeder [120] and Kerberos [87]. Nev-
ertheless, some criticisms have been published on certain properties in the
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logic, such as informality in its operational semantics [147]. Nessett criticized
BAN logic over its claimed goals of authentication [121], but Syverson claims
that this criticism is invalid because BAN does not claim to provide security,
but trust. The most criticized points are the logic’s incomplete semantics and
modelling of freshness, which can result in ambiguity and vagueness at the
idealization step. Eventually, the debate has led to a clearer understanding of
the role of knowledge and belief in the analysis of key management schemes. It
is required to define specifically the relationship between belief and knowledge.

Therefore, many other logics are developed from BAN logic. They either
extend or adapt BAN logic or use the same concept for different types of
problems in cryptographic protocols.

2.5.2 Extensions to BAN Logic

The GNY logic is a successful but complicated method [62]. This logic
aims to analyse a protocol by making explicit any required assumptions and
drawing conclusions about the final position it reaches. It separates the con-
tent from the meaning of messages to enhance the consistency in the formal
analysis.

An important notion presented in the logic is recognizability to represent
the fact that a principal expects certain formats in the messages it receives.
Every principal in a protocol has specific expectations about the message he
or she will receive. For example, if it is specified that A will receive nonces N a

and N b in a protocol step, then the subsequent N a and N b will be viewed as
nonces.

Another important contribution of the GNY logic is the distinction of belief
from possession. Consequently, each principal has a belief set and a possession
set. In addition, GNY explicitly represents whether a principal generated a
message itself. Together with basic constructs of BAN, the following are in-
cluded in GNY logic.

• P � X. The principal P is told formula X. P receives X after performing
some computations, such as decryption.

• P � X. P possesses, or is capable of possessing, formula X. This includes
all formulae that P has been told, that P generated or that are computable
from the formulae he already possesses.

• P | ≡ φ(X ). P believes, or is entitled to believe, that formula X is recog-
nizable and capable of possessing, formula X. This includes all formulae
that P has been told, that P generated or that are computable from the
formulae he already possesses.

In particular, GNY logic defines a not-originated-here formula by prefixing a
star to the formula. For example, P � ∗X represents that P is told a formula
which he did not convey previously in this protocol run.
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Based on the constructs, the logic also defines inference rules like BAN
logic. Several representative rules are described below.

• Being told rule.

P � (X,Y )
P � X

If P is told a formula, then P is told each of its concatenated components.
A similar rule can be that the told formula is encrypted by a key K that
is known by P, then P is told the decrypted contents of that formula.

• Possession rule.

P � X

P � X

The principal P is capable of possessing anything he is told. Furthermore,
if P possesses more than one formula, he possesses the concatenation of
them.

• Recognizability rules.

P | ≡ X
P | ≡ φ(X,Y ), P | ≡ φ(F (X))

That means if a formula is recognizable by P, then any formula containing
the formula and the computational function of this formula are recogniz-
able.

P | ≡ X,P � K
P | ≡ φ({X}K), P | ≡ φ({X}−1

K )

That means if a formula is recognizable and the key K is possessed by P,
then the encryption and decryption of the formula by K are recognizable.

• Rationality rule.
Another important supplement in GNY logic is the rationality rule. This
rule shows that the current set of rules can be extended to allow princi-
pals to derive rational conclusions about the state of other principals. For
example, if we have a postulate.

C1

C2

then we can obtain a new postulate below:

P | ≡ C1

P | ≡ C2
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The GNY logic is applied to detect the flaws in the Needham and Schroeder
protocol. In comparison with BNY logic, it separates the content from the
meaning of a message. The logic has no the universal assumption that all
principals are honest and competent, and reasons about beliefs held by others
in terms of trust of different levels.

GNY logic however is more complicated and elaborate than other ap-
proaches owing to the many inference rules needed to be considered at each
stage. As a result, there have been a number of extensions of the logic to
accommodate to other protocols. For example, BGNY logic [14] is an ex-
tended version based on higher order logic (HOL) theory. It extends the GNY
logic by including the ability to specify protocol properties at intermediate
stages and being able to specify protocols that use different operations such
as encryption and hashing operations.

Extending BAN by adding probability reasoning. In [24], Campbell
et al. claim that BAN logic is only able to evaluate the trust that can be put
on the goal by the legitimate communicants using beliefs of the principals.
However, it is unable to model insecure communication channels or untrust-
worthy principals. They extend BAN logic to a probabilistic logic along with
the added capability of modelling hostile environments and drawing a conclu-
sion in such cases.

The beliefs of principals are quantified by attaching probability values to
the corresponding statements in the logic. The probability of a belief and
the probability of an inference rule are defined as the partial belief and the
probability that the rule holds. It aims to compute the probability that the
proof is valid or justifiable in terms of the probabilities of the assumptions of
the proof.

Let B be the union of the set of axioms and the set of rule instances and
let w be an interpretation. Thus, the probability of α ∈ B is defined as

P (α) = P ({w : w(α) = 1})
Let c be a conclusion which can inferred from B. The interpretation of w is
extended to c by defining w(c) = 1 only if there is a proof c from B. In a
similar way, the probability of a conclusion c can be defined as

P (c) = P ({w : w(c) = 1})
In each state of a protocol run, only some of the sentences and some of the
inference rules can be valid. Thus, only a subset of the conclusions are possible.
Therefore, the probability of c can be viewed as the probability that the formal
proof of c is valid and depends on the probabilities that the assumptions and
rules are valid.

There may be more than one way to infer the conclusion c by the given
probability from P(ai) (i = 1, · · · , n). A linear programming of the problems
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makes it possible to find an interval [L, U ] such that L ≤ P(c) ≤ U. Let p1,
· · · , pn be an assignment of probabilities to the assumptions a1, · · · , an of a
proof of the conclusion c. Then, the lower limit L (respectively upper limit
U ) can be obtained by the simplex linear algorithm:

minimise (resp. maximise) Z = q.π
subject to the constraints W π = p

1.π = 1, πi ≥ 0

where p = {p1, · · · , pn} is a n-vector, and q and π represent 2n vectors of the
assignment of c and probability distribution, respectively.

This method is applied in the formal proofs of the correctness of protocols,
in which uncertain assumptions and postulates are permitted. BAN logic is
given a probabilistic semantics, by which to express the insecure and uncer-
tain environment. The belief in the conclusions depends on the probabilities
assigned to the beliefs of principals and inference rules used in the proof. This
study uses an example to describe how to calculate the probability in the
authentication of server S of Needham-Schroedoer protocol in terms of the
given assumptions and rules instances. It discovers the weakness of the pro-
tocol without using the prior knowledge. Although it is a promising method,
it is not intuitive and too difficult to use.

Kailar proposes a special-purpose framework for the analysis of commu-
nication protocols that require accountability [82], such as the protocols for
electronic commerce transaction. Unlike the current methods to reason about
the evolution of beliefs of principals, this framework aims to reason about the
ability of principals to prove accountability. It is not appropriate for the anal-
ysis of protocols, in which the accountability is not desired. Also, the message
freshness or confidentiality is not considered.

2.6 Proof-Construction Approach

It is observed that inference-construction methods have limitations in handling
secrecy. It is difficult to explain exactly what a belief-logic proof proves due to
the lack of clear and complete semantics. Attack-construction methods may
be subject to the exploration of search space in case of a complicated protocol.
The proof-construction methods intend to deal with the above drawbacks.

Bolignano proposed an approach to verify authentication protocols [9]. It
uses general purpose formal methods rather than modal logic to describe the
protocol, hypotheses and authentication properties. The author claims that
the use of general purpose formal methods can easily utilize the well-defined
and largely used techniques.

This approach aims to obtain simple and concise proofs when a precise
modelling of the protocol is required. In particular, it separates the modelling
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of reliable agents and that of unreliable ones (intruders). Unlike Meadows’s
approach that focuses on proof simplification, it focuses on proof automation.

The transmission of a message is viewed as the combination of sending
action and receiving action instead of an atomic action as the sending and
reception of a message are not synchronous. To model the Needham-Schroeder
protocol, they define 14 kinds of atomic actions in the form of S × S, in
which S represents the domain of possible state. The use of invariants and
the axiomatization of intruder knowledge leads to a concise verification process
as with conventional modal logic based methods. The first invariant property
is that the private keys remain unknown to the intruder, and the second
invariant is the fact that A and B use the correct public keys for the principal
they want to talk to. The processes have been subjected to experiment in
combination with the typed logics framework of the Coq prover [45].

An inductive method was presented by Paulson [129] to prove properties
of security protocols. Unlike belief logics that permit short proofs to elim-
inate human error, inductive approaches include long and detailed proofs.
The induction aims to prove every safety property over the protocol. The
complicated proofs of this approach can be speeded up using the proof tool
Isabelle/HOL, and a complete Isabelle proof script can be completed in a few
minutes.

Traditionally, a protocol specifies a set of traces and is modelled using
standard predicate calculus and set theory. Each trace may consist of a number
of protocol runs. However, the recursive authentication protocol consists of
arbitrary number of parties. For example, A contacts B. B may contact some
other agents C or contact the authentication server. In either way, several
fresh nonces or fresh session keys are generated. Such a protocol is hard to
specify using traditional inductive methods.

Paulson presents a formal method to a variable-length protocol by recur-
sive program, in which the number of steps, the number of participants and
the number of session keys are not fixed [128]. It does not attempt to search
for attacks, but to build guarantees for correctness properties. This method
is partially automated by the Isabelle theorem prover.

2.7 Approaches Using Formal Tools and Specification
Languages

The above methods can easily be applied to verify security protocols by the
developers themselves. However, it is rather difficult for other analysts due
to the fact that the protocols have to be redefined for each of the techniques
developed and it is not easy to transfer the existing formal specification of
the protocols into the used formal systems. Consequently, a number of formal
specification languages and tools are developed for the purpose of automatic
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protocol translation. They aim to design a unique protocol specification lan-
guage, which can be used as the common input format for developed formal
analysis techniques.

The infinite state space is a difficulty in verifying the security of cryp-
tographic protocols. Furthermore, it is not easy to enable the automation of
the language verification procedure in case of complicated protocols. Meadows
proposes a heuristic approach for defining formal languages that can be auto-
mated in the most recent version of the Analyser [110]. In contrast, previous
languages were manually specified. The approach is then used to prove the
unreadability properties of languages automatically. This automatic language
generator uses a simple format and speeds up proving that a word is or is not a
member of a language, by which to improve the Analyser’s performance. The
rewrite rules of this approach use a standard format described as the form
of G → X, in which X represents a variable appearing in G. The features
make it possible to prove unreadability results for other formal systems using
rewrite rules.

A simple Interface Specification Language (ISL) is defined by Brackin. It
is used to describe an Automatic Authentication Protocol Analyser(AAPA)
which can automatically either prove that protocols satisfy the desired prop-
erties, or find where the proof attempts fail [16, 17]. The AAPA can be used
either alone or as part of the convince system. The convince tool facilitates the
modelling and analysis of cryptographic protocols using an automated sup-
port. The time and space required to do an AAPA analysis grow quadratically
HOL theorem prover with the size of the protocol making it possible for the
AAPA to analyse quickly large and complicated protocols. However, AAPA
misses some failures, most notably non-disclosure failures, due to the fact that
BGNY belief logic makes authentication deductions by assuming that there
have been no non-disclosure violations.

Kemmerer presents an approach to analysing encryption protocols using
machine-aided formal verification techniques [83] in terms of the formal spec-
ification language by Ina Jo [136]. Two specific symbols are used in this lan-
guage.

N ′′ represents the new value of a variable,
T ′′ defines a subtype of a given type T

An example system is described by Kemmerer using the Ina Jo specification
language. Ina Jo criteria clauses specify the critical requirements that the
system is to satisfy in all states. Then theorems are generated to verify whether
the requirements are satisfied or unsatisfied. Kemmerer detects a weakness in
the sample system by this formal specification.

Sidhu [144] and Varadharajan [154] make use of state machine-based lan-
guage to specify a protocol. A protocol is viewed as a collection of commu-
nication processes, one process for each entity. Each entity in the protocol
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is represented as a finite state machine. A state transition has arisen due to
the sending and receiving of messages. Three specific notations are used to
describe the transition.

−a represents the event of transmission of message a.
+a represents the reception of message a.
+ a/−b represents the reception of message a followed by transmission of
message b.

Varadharajan uses a state diagram for each entity to capture their actions in
the protocol. Starting from the initial state, an arc is used to connect to the
consequent state for each sent or received message. Figure 2.5 shows a simple
state machine diagram for entity A. Let KDC be key distribution centre and
let B be an arbitrary entity in the network. From the initial state S 0, A can

1. send the message a to KDC
2. receive the message c from another entity B who has acquired the session

key from KDC.

If the (1) happens, the state S 1 is reached, and if (2) occurs, the state S 2

is reached. A can receive message c and message b, in the state S 1 and S 2,
respectively. More states can be added to the state diagram for the entity A
until all message transmissions of A are included.

S0

S1 S2

a +c

+b

+c
Fig. 2.5. State machine diagram for entity A

However, this method is complicated and not intuitive. In addition, it is as-
sumed that A and B play the same role in the protocol. This collides with the
assumption in [144], in which it is assumed that they have no symmetric role.

Another specification language, Common Authentication Protocol Specifi-
cation language (CAPSL), is developed by Millen [115]. CAPSL is proposed as
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a single common protocol specification language that can be used as the input
format for any formal analysis techniques, such as Prolog state-search analysis
tools [114]. Casper, developed by Lowe [99], semi-automatically produces the
CSP description from a more abstract description, thus greatly simplifying
the modelling and analysis process. Casper does not yet cover all the fea-
tures found in security protocols, but has been applied to a number of known
protocols, such as the Kerberos protocol [123], and Yahalom protocol [22].

It should be noted that although much research has concentrated on the
attack-construction approach, proof-construction approach and formal spec-
ification language, most work in this field has been redirected because the
inference-construction approach has been successful and attracted much at-
tention due to its simplicity.

The verification model proposed in our book is based on ENDL. It inher-
its the properties of ENDL, which make it more suitable for the validation of
electronic transaction protocols. Moreover, unlike the aforementioned meth-
ods, this verification model focuses on the formal analysis of secure electronic
transaction protocols and is flexible enough to verify various security protocols
by extension or adaption.

2.8 Summary

This Chapter aims to introduce some basic concepts and background knowl-
edge. The primary security mechanisms to attain the security goal are clas-
sified into system security, network security, and data security. Among them,
data and transaction security play an important role in e-commerce. The com-
mon way to achieve data security is encryption, and access control is often
used to provide system security. In general, the security mechanisms are inte-
grated into the security protocols to achieve security goals of different levels.

This chapter then describes the formalism, including the inference rules
and basic notations. Three fundamental inference rules present the messages
transmission and belief interrelationship.

A great many efforts have been put into the analysis of security proto-
cols, including attack-construction methods, inference-construction methods
and proof-construction methods. The aforementioned methods mainly employ
theorem proving and state exploration tools, which are usually slow and com-
plicated. BAN logic is a logic of belief. Its simple and intuitive inference rules
make the formal analysis of protocol easy. Many other efforts are extended
or adapted from this logic to different types of problems in cryptographic
protocols. Recently, some attempts have been made to automate the verifica-
tion of security protocols by model checking. On the other hand, a number
of formal specification languages and tools are also developed to facilitate the
description of protocols.
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Although security protocols have been widely used for different security-
related purposes, they are confronted with the challenge of subtle flaws due to
the complexity of security protocols, diverse security properties, and a hostile
environment. A security protocol uses cryptography to protect the transmitted
data and to authenticate the other party. With the growth of computational
power, the cryptography has evolved from the traditional substitution cipher
and transition cipher to more complex public-key cryptography. However, a
number of security protocols have been found to be subject to subtle flaws
because designing them is a difficult and error-prone task. Several typical
attacks are presented in this chapter.

Regardless of the varied cryptographic algorithms and methods of authen-
tication, the formalization of security protocols tends to be similar. There
have been considerable efforts to develop formal methods for security proto-
col analysis. Most of them are based on the Dolev-Yao model or BAN belief
logic. However, they have shown limitations in detecting attacks owing to
either exploration of state space or many ideal assumptions.

As more and more transactions such as financial transactions by e-
commerce systems are performed electronically on open networks, and as
more and more sensitive and confidential messages must be transmitted in
some manner, concerns over information security challenge us and attract
more and more attention. A number of security services including confiden-
tiality, integrity, non-repudiation, authentication and authorization have been
widely used to ensure reliable, trustworthy transmission of messages. Usually,
they are achieved by using cryptography and are incorporated into security
protocols.

Nevertheless, the design of security protocols is complicated and error-
prone. Some of them have been found to contain subtle flaws. In the past
twenty years, there have been considerable efforts to develop formal methods
for protocol analysis. They have achieved good performance in most cases.
Not only have plenty of special-purpose tools or adapted general-purpose tools
been developed, but programmers have attempted to use them to create real-
istic protocols in many cases. The obtained feedback can be a good foundation
for designers to improve the protocol’s security.



3

Formal Analysis of Secure Transaction
Protocols

3.1 Introduction

In today’s information technology society, people are increasingly dependent
on the internet for quality life. E-commerce systems have thus being presented
attractive proliferation. The short list of facts below should be sufficient to
place the current situation into perspective.

United States e-commerce transactions resulted in 707 million dollars
in revenue in 1996, increasing to an impressive 2.6 billion dollars in
1997, and to an incredible high of 5.8 billion dollars in 1998. It is es-
timated that in 2007, nearly 40 million US households will book travel
online, spending 86 billion on airline tickets, lodging, cars, intercity
rail, cruises, and packages. (Forrester).

As a result, a significant amount of research in the field of e-commerce has been
carried out in the past decade, resulting in a variety of algorithms and tech-
niques for electronic trading on the internet. A key problem for e-commerce
users is how to carry out trade transactions on the internet safely. The security
problems of e-commerce have mainly arisen from the fact that:

• data can be divulged: some important commercial information, including
account number, is transmitted in plain text.

• information and source can be shared: a number of users in different loca-
tions can freely access other computers.

Security in e-commerce is implemented by relying on a set of security proto-
cols that meet the user’s expectation for secure business transactions. Com-
munication between principals may be compromised without effective secu-
rity protocols for key-exchange, authentication and privacy. Therefore security
protocols, including cryptographic protocols and secure transaction protocols
etc, have become the prime requisite of e-commerce systems. Ideally, these
security policies should state the overall objectives of a transaction in terms

Q. Chen, C. Zhang, S. Zhang: Secure Transaction Protocol Analysis, LNCS 5111, pp. 73–106, 2008.
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of integrity, confidentiality and availability, and address the range of circum-
stances under which these objectives must be met.

Recently, there have been many remarkable efforts made on the security
problem by developing methodologies, theories, logics, and other supporting
tools. They are effective in overcoming the weakness and reducing the redun-
dancies at the protocol design stage. However, there are also several instances
of protocols advocated in [79, 120] which have been proved to be vulnerable
to attack [65]. Therefore, it is so important to find ways to justify whether
so-called secure protocols are secure. Without this justification, the users of
electronic transactions will be on risk.

As already described, the existing approaches to validate security protocols
can be mainly classified into three categories: attack-construction approaches,
inference-construction approaches and proof-construction approaches. Al-
though many subsequent methods are developed from them, as described in
Chapter 2, they are subject to the exploration of search space, incomplete
semantics or complexity. On the other hand, the features of electronic trans-
action cannot be handled by most of the traditional formal analysis of security
protocols.

There have been attempts to analyse realistic e-commerce protocols, in-
cluding the work of Kailar [82], Brackin [15], Meadows and Syverson [113]
and Bolignano [10]. Recently, a number of approaches have been developed to
analyse electronic commerce protocols from different aspects. An anonymous
fair exchange e-commerce protocol that is claimed to satisfy fair exchange and
customer’s anonymity is analysed using OTS/CafeOBJ method [88]. In [127],
a formalism that provides an expressive message passing semantics and so-
phisticated constructs for modelling principals is presented. A formal analysis
based on Casper and FDR2 is proposed to analyse two electronic payment
protocols: Visa 3D Secure and MasterCard Secure Code. It highlights issues
concerning payment security in the proposed protocols. As to the electronic
transaction using mobile devices, this complements protocol analysis tech-
niques in terms of state enumeration. However, these security protocols are
highly susceptible to subtle errors in real-world transactions. There are also
many technical issues arising from cryptographic algorithms and network com-
munication protocols [8, 41]. The limitations in existing validating approaches
have been described in the former chapters.

As we have seen, it is very difficult to develop a verification approach
that is suitable for all related protocols. In this chapter, a logical framework,
ENDL [29], is proposed for validating secure transaction protocols [30]. The
ENDL is referred as an inference-construction approach. It is developed since
NDL contains some limitations, 1) it is not considerate on some aspects of
practical financial circumstance, such as the certificate authentication; 2) it
has been unable to accommodate some potential threats such as collusion
attacks. The accumulation rule is further classified in terms of corresponding
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situations, thereby it becomes more reasonable and applicable. By using the
timestamp in validation, this can benefit the detection of replay attacks, which
cannot be done by NDL.

Compared to traditional techniques, ENDL has some distinct features,
such as fail-negate, dynamic, non-monotonic, freshness, identity and random
number. Some properties are inherited from NDL. The timestamp has been
used for modelling freshness in ENDL, which is the complement of BAN and
GNY. These features enable us to solve the key problem of data integrity.
To evaluate the logic, three practical instances of security protocols are il-
lustrated. The results demonstrate that ENDL is effective and promising in
analysing security protocols.

This chapter focuses on the design of a logical framework, ENDL. Sev-
eral formal methods for analysing e-commerce protocols are presented in Sec-
tion 3.2. Section 3.3 presents a computational model. In Section 3.4, a formal
description of basic terms and statements of ENDL are provided. Section 3.5
establishes a basic inference framework and uses three practical transaction
instances to evaluate ENDL. Section 3.6 concludes this chapter.

3.2 Research into Verifying Electronic Transaction
Protocols

Electronic transaction operations depend on cryptographic protocols. How-
ever, weakness in encryption results in vulnerabilities. As a result, it is critical
to develop techniques for comprehensive protocol analysis, especially to verify
electronic transaction protocols due to the rapid growth of online trading.

In recent years, there have been various efforts to develop methods for
the formal analysis of electronic transaction protocols. It may be difficult to
introduce all of them in this book. Therefore, only representative methods are
presented here.

3.2.1 Formalism for Protocol Analysis Using Process Calculi

A comprehensive analysis of protocols needs to model the complex message
and knowledge and behaviour of principals. However, traditional logic tech-
niques focus on modelling messages and the beliefs of principals, but do not
provide mechanisms for expressing and reasoning about principal behaviour.
Although process calculi capture the behaviour of principals, only limited
facilities for modelling the knowledge and reasoning about it are provided.
Therefore, Papa [127] presented a method for protocol analysis by combining
logic and process calculus components.

One of the most important steps is to model the communication between
principals as synchronous message passing. The initial definition includes the
key, message, pattern and the message-pattern matching operator.
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Modelling communication. A key is viewed as a public/private key, a
secret key, the concatenation of two keys, or nil, for an unencrypted message.
This can be expressed as:

key ::= Kn|K−1
n |Ks

n|Kn : Km|nil
It shows that a key is a public/private key (Kn/K−1

n ), a secret key (K s
n),

the concatenation of two keys (Kn : Km), or nil. n and m in this formula
represent the name of principals.

A message is specified as a list of values {v1, v2, · · · ,vk} encrypted by a
key. A value may consist of a key, a message, a name or a fresh name �n:

message ::= {v1, v2, · · · ,vk}key

value ::= key | message | n | �n
Modelling principals. This presents an agent semantics that allows the
comprehensive modelling of messages and principals. A system is viewed as
zero or more concurrently executive agents. An agent is defined by its identifier
ID, a list of values lstv (representing its knowledge), and a list of concurrent
communication sequences cseq.

agent ::= ID[lstv](cseq)

In the similar way, a concurrent sequence (cseq), annotated sequence (aseq)
and sequence (seq) can be defined by:

cseq ::= aseq � cseq | nil
aseq ::= [seq].[lstv ] | [seq]∞
seq ::= m̂seq

where � represents the concurrency operator for sequence and [seq]∞ repre-
sents an infinite sequence.

A concurrent sequence is the composition of an annotated sequence and a
concurrent sequence. An annotated sequence is a sequence (seq) of message
followed by a list of fresh names, or a sequence that has to be executed repeat-
edly. A sequence is specified as an output message m followed by a sequence,
an exposed pattern followed by a sequence, or empty.

Suppose C, M, S, and Prod represent customer, merchant, server and
product, respectively. NetBill protocol can be formally modeled as follows in
terms of three steps, negotiation, delivery and payment.

1. C → M : {Prod}KS
CM

2. M → C : {Price}KS
CM

3. C → M : {GoodsOrder}KS
CM

4. M → C : {Goods}KS
G

5. C → M : {{PaymentOrder}K−1
C
}KS

CM
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6. M → N : {{{PaymentOrder}K−1
C

, KS
G}K−1

M
}KS

MN

7. N → M : {{Result, KS
G}K−1

N
}KS

MN

8. M → C : {{Result, KS
G}K−1

N
}KS

MN

In the negotiation steps (1) and (2), the customer and merchant establish a
price for the product. In the delivery steps (3) and (4), the customer places a
goods order and the merchant delivers the encrypted product. In the payment
steps (5), (6), (7) and (8), the customer pays for the order and obtains the
decryption key.

In addition, this method presents three types of inference rules for speci-
fying a formal semantics of agent behaviour.

• Agent communication rules. Three rules including In, Out and Comm are
specified for agent communication. The In rule defines the behaviour of an
agent that exposes a pattern and receives a message. The Out rule specifies
the behaviour of an agent that outputs a message. Unlike the In and
Out rules, the Comm rule defines reduction for a pair of communicating
agents.

• Agent knowledge rules consist of Knows, Extract and Construct rules.
The Knows rule represents predicates, in which the precondition shows
that an agent knows a value v if v is in the agent’s list of values or if
the agent can be transformed into an equivalent agent that knows v. The
Extract rule describes how to obtain values from a message in the list
of values of an agent. The precondition requires the agent to have a valid
key to access the message components. The Construct rule is used to
generate new values from values known by an agent. The newly created
values are concatenated with the agent’s list of values. Nevertheless, the
changes to the list of values only alter the representation of what the agent
knows but do not create new agents.

• System development rules include Chain rule and ChainBase rule.
Chain and ChainBase rules specify reductions for concurrent agents with
multiple communication phases. The precondition of Chain is based on
single reduction but the precondition of ChainBase uses agent equiva-
lence.

The inference rules In, Out, Comm, Chain and ChainBase can be used to
model agent behaviour and prove behavioural properties. Similarly, the rules
Knows, Extract and Construct can be used to reason about the knowledge
held by agents.

The technique is used to analyse NetBill protocol. The authors also make
comparisons with state exploration, logic and process calculus based ap-
proaches. However, it is difficult to use due to complicated message passing
semantics and concurrency constructs. And it is unclear whether the approach
is well suited to verifying sophisticated electronic transaction protocols.
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3.2.2 Formal Analysis Using an Observational Transition System

Fair exchange and anonymity are two important properties of electronic trans-
actions. Some e-commerce protocols have claimed to satisfy the two require-
ments. To fully express them, not only the safety properties but also the
liveness properties are needed. An approach [88] is proposed to formally anal-
yse an e-commerce protocol, in which the protocol, together with the intruder,
are modeled as an OTS (Observational Transition System). This transition
system is written in CafeOBJ, which is an algebraic specification language.

The method presents how to model the protocol as an OTS; and how
to write the OTS and express the safety part of the two requirements in
CafeOBJ ; and how to partially verify that the OTS satisfies the safety part
by writing proofs or proof scores in CafeOBJ. It assumes that there exists a
universal state space called Υ . An OTS S can be written as <O, I, T>.

• O represents a set of observers. Each o ∈ O is a function Υ → D, where
D is a data type. Let v1, v2 ∈ Υ be two states. The equivalence between
two states v1 = S v2 is defined as ∀ o ∈ O, o(v1) = o(v2).

• I represents a set of initial states and I ⊂ Υ .
• T represents a set of conditional transition rules. Each t ∈ T is a function

Υ I = S → Υ I =S. For each v ∈ Υ , t(v) be the successor state of v with
respect to t.

An OTS S is described in CafeOBJ. An execution of S can be viewed as an
infinite sequence v0, v1, · · · of states. It usually satisfies the two conditions
below:

• Initiation: v0 ∈ I.
• Consecution: ∀ i ∈ {0, 1, · · · }, v i+1 =S t(v i) for some t ∈ T.

The modelling of protocol consists of five phases in this approach.

1. Assumptions. It assumes that there is only one legitimate third party
and there is only one legitimate bank for each customer and each mer-
chant, respectively. The intruder can eavesdrop and glean any transmitted
message in the network, however the intruder can decrypt a encrypted
message or sign something only he/she knows the right key. Using the
collected messages, the intruder can fake and send messages.

2. Formalization of Messages. There are 43 data types that are needed
to formalize before formalizing messages. For example, Customer, Mer-
chant, CBank, MBank and Tparty represent customers, merchants,
customers’ banks, merchants’ banks and third party; constants ic, im,
icb, imb and itp represent the intruder acting as a customer, a merchant,
a customer’s bank, a merchant’s bank and a third party, respectively. The
other data types can be found in [88]. After formalizing data types, mes-
sages can be formalized. Some operators are used to denote or construct
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the messages. For example, creatorm1, senderm1, receiverm1, s1m1
and c1m1 will return the first argument, the second argument, the third
argument, sig1 and cipher1 in message 1, respectively. Sigi and cipheri
represent digital signature and cipher text, respectively.

3. Formalization of the Network. The network is modeled as a collection
of messages. It is used as the intruder’s storage to glean quantities and
further fake messages. Also, the network is used as each principal’s private
memory that reminds the agent to send messages.

4. Formalization of Trustable Principals. The set of used random num-
bers and the networks are assumed to be observable. The observers are
represented by CafeOBJ observation operators ur and nw, respectively.
The operators are declared as follows:
bop ur : System → URand
bop nw : System → Network
where bop denotes the declarations of observation and action operations
start with bop. Ur and nw represent CafeOBJ observation operators.
Urand is a set of random numbers that are used to generate really fresh
random numbers.

5. Formalization of the Intruder. The intruder can fake messages based on
the gleaned information. The intruder’s faking messages are denoted by
CafeOBJ action operators. Three action operators for faking message m1

are listed below:

bop fkm11 : System Customer Merchant Random Po Sig1 Cipher1→
System
bop fkm12 : System Merchant Customer Po Random Random→ Sys-
tem
bop fkm13 : System Customer Merchant Random Price Random →
System

According to the above assumptions and formalization, the verification phase
is conducted to prove the required safety properties. Suppose a customer c
conducts a transaction with a merchant m. It is assumed that c and m are
trustable. The fair exchange property can be informally described below:

• If c received the ordered goods, then m has already been paid or will be
ultimately paid for the goods.

• If m is paid for the goods ordered by c, then c has already received or will
ultimately receive the goods.

In the similar way, the customer’s anonymity can be informally described
below:

• A customer uses a fake name to order goods from a merchant. The cus-
tomer’s bank account is never revealed.
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The authors have formally or partly verified that the above safety properties
holds for the protocol [74]. The verification was conducted by writing proof
scores showing that the protocol satisfies these requirements in CafeOBJ and
executing the proof scores with the CafeOBJ system.

3.2.3 Formal Analysis of Card-Based Payment Systems in Mobile
Devices

Regardless of the rapid development of card based payment for online pur-
chase of goods, the safety of electronic transactions has become a key issue to
prevent its wider acceptance. The customers are concerned about the unau-
thorised spread of individual information to third party, theft of information
kept by the merchants and the divulgence of credit card numbers, whereas
the main concern of merchants and service providers is the authentication of
card holders because the malicious user can use the stolen credit card number
to make a purchase online.

To guarantee secure transactions, Visa and MasterCard independently pro-
posed two electronic payment protocols: Visa 3D Secure [155] and MasterCard
Secure Code [138, 139, 140]. The protocols aim to provide card holder au-
thentication while they are conducting an electronic transaction using mobile
devices. The protocols use pre-registered passwords to provide card holder au-
thentication and Secure Socket Layer / Transport Layer Security (SSL/TLS)
for data confidentiality over wired networks and wireless Transport Layer Se-
curity (WTLS) between a wireless device and a Wireless Application Protocol
(WAP) gateway. A set of generic security goals applicable to electronic pay-
ment systems are proposed, and the formal tools Casper [57] and FDR2 [53]
are used to analyse the protocols.

To participate in a payment system, both Visa and MasterCard require the
card holders to enrol and register their passwords. Payment authentication is
processed only if the card holder has previously enrolled with the right Issuer.
The details with respect to enrollment and registration can be seen from the
protocols but are ignored below.

Casper developed by Lowe is able to convert a high-level notation of the
protocol to a Communicating Sequential Processes (CSP) script. This script
can then be executed on a model checker, such as FDR, to verify whether the
protocol achieves specific security objectives.

Firstly, each principal and intruder who can participate in a protocol are
modeled as a CSP process. Casper is used to simplify the CSP description of
protocols by allowing the user to specify the protocol at an abstract way. This
script is then compiled in Casper and a CSP script is output, which is run by
using the model checker FDR2.

Casper creates one refinement assertion for all secret specifications and one
refinement assertion for each agreement and aliveness specification. A script
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file includes statements making assertions about refinement features. Typi-
cally, the statements have the form as follows:

assert Abstract [X = Concrete
Example: Secret specification:
Secret(B, ban, [A])
Assertion generated:
SECRET M::SECRET SPEC[T=SECRET M::SYSTEMS S

The selected assertion is sent for testing by using FDR. The symbols asso-
ciated with the assertion are updated to reflect the outcomes. The symbols
projected by the FDR are:

• Tick (
√

) shows that the test is completed successfully.
• Cross (X ) shows that the test is completed but the refinement does not

hold. The FDR can then be used to find out the reason for the failure.
• Exclamation mark (!) shows that the test failed to complete due to: a

syntax or type error in the scripts, exhausting resource while trying to run
the test, or interrupted test.

• Zig-zag (Z ) shows that FDR cannot finish a test owing to a fault in coded
algorithms.

If a refinement is found to be unsatisfied, then the protocol might contain
a weakness. The weakness in the protocol is checked by observing the trace
leading to divergence.

An important process to model the protocols is to reserve important pro-
tocol mechanisms while simplifying the protocols. Casper representation of
the protocols includes the SSL representation and certificates. The protocols
use SSL (Secure Socket Layer) to provide security for data transmission. As
to protocol analysis using Casper/FDR, it assumes:

1. The underlying cryptographic algorithms of public key and symmetric key
are robust.

2. The client and server successfully negotiated the SSL to generate a sym-
metric session key.

In addition, this assumes that all agents unconditionally trust the certification
authority and public key signed by it. Nevertheless, the distribution of cer-
tificates is ignored and all certificates held by the protocol participants have
been validated by the certification authority.

Visa and MasterCard do not clearly specify any security goals, whereas a
generic set of security goals are proposed to verify the protocol. The goals are
classified into four categories, including data security, payer security, payee
security and transaction security. The formal analysis of the protocols are
presented in terms of each security goal.
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Data security represents that the third party that does not involve in the
payment system in an electronic payment system should not gain access to
the participants’ transactional data or their secret keys. The data security can
be described in terms of third party, privacy and SSL keys.

Third party. For Visa 3-D Secure, the security requirement can consist
of C ’s values pan (primary account number) and edate (expiry date), which
should be known to ACS (access server), M and DS (domain server) only.
The process can be represented in an abstract way:

StrongSecret(C, pan [ACS, M, DS ])
StrongSecret(C, edate, [ACS, M, DS ])

As to MasterCard Secure Code, it requires that the C ’s values pan and
expiry should be known to ACS and M only.

StrongSecret(C, pan [ACS, M ])
StrongSecret(C, expiry, [ACS, M ])

Privacy represents that the payer’s payment information should not be known
by the payee and the payer’s order information should not be known by the
bank. An example of Casper specification with respect to C ’s password of
Visa 3D Secure is represented as:

StrongSecret(C, password, [ACS ])

In the similar way, SSL keys can be defined. Both protocols use a shared
SSL session key to encrypt messages transmitted between participants. For
example, a session key shared between M and C and the verification of its
agreement can be represented in Casper specifications:

StrongSecret(C, keyMC, [M ])
StrongSecret(M, keyMC, [C ])
Agreement(C, M, keyMC )
Agreement(M, C, keyMC )

Payer security is described from two aspects, authentication, and autho-
rization and acceptance. The former represents that the payer should have
proof of other agent’s authenticity before communicating with that agent.
Nevertheless, the latter means that the payer should have proof of transac-
tion authorization by the bank and transaction acceptance by the payee for a
transaction.

Payee security. Similar to the payer security, the payee security consists of
authentication and authorization, but no acceptance. Thus, the payee should
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obtain proof of other agent’s authenticity before transactions, transaction au-
thorization from the payer, and transaction authorization from the bank.

Bank security includes authentication, authorization and processing re-
quest. Authentication of card holders and vendors is via password. The Casper
representation for proving the authentication of card holder via the bank and
directory server is represented as:

Agreement(C, ACS, [password ])
Agreement(ACS, C, [password ])
StrongSecret(ACS, password, [C ])

The bank needs to obtain an authorization proof for transactions from the card
holder according to the successful authentication of card holder and proof of
agreement on amount and merchant. For example, the Casper representation
for proving authorization of payment amount and current payment date-time
by the card holder is described as:

Agreement(C, ACS, [pamt ])
Agreement(C, ACS, [pdt ])

On the other hand, the bank should obtain proof of transaction processing
request from the merchant by validating the payment authorization request
from the merchant.

Transaction security. Every transaction process should be unique. In Visa
3D secure, the uniqueness is obtained by using the fresh generation of trans-
action id by the merchant, and its verification by the bank. In MasterCard
Secure Code, transaction uniqueness is achieved by using the fresh transaction
number generated by the merchant.

In this method, SSL is incorporated into the protocol representation since
Visa 3D secure and Master Card secure depend on SSL to provide confiden-
tiality for messages. An attack on Visa was detected from the protocol, which
is based on the merchant being dishonest. Although most customers trust
known merchants, the smaller merchants may lack the trustworthiness in the
future in contrast to more well established merchants.

3.3 A Computational Model

Figure 3.1 depicts a computational model for e-commerce. There are two
parts in the figure: a public environment and a secure transaction protocol.
The public environment is an open network that is composed of principals
connected by communication links. All kinds of messages on these links, such
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as identity, account number and key, constitute the communication between
principals. The principal not only places messages on a link, but also sees or
modifies the messages on a link. An open network is considered as a set of
principals (users, hosts, and processes) and messages. Principals can interact
with each other according to the rules of some predefined protocols in order
to accomplish a common task (e.g., to encrypt a message). Interactions are
based on messages that are conveyed via a communication facility.

                                                                                      

                               ffff 

Principal
Principal 

Secure transaction protocol

Request 

……

Authentication

Response

Open network

Fig. 3.1. A computational model

The secure transaction protocol is a method used to secure transactions over
an open network and is carried out by the principals. The protocol is organised
into several stages by message transmissions, such as a request for certificating
authority. In these stages, cryptography is used to provide confidentiality of
information to ensure data integrity and to authenticate the participants. A
special execution of protocol is called a ‘session’. For convenience, this chapter
only considers sessions that appear to end successfully, and the overhead issues
are excluded.

PKI (public key infrastructure) tree: As principals receive a certifi-
cate, they need to verify the validity of the certificate through a hierarchy of
trust. Each certificate is linked to the signature certificate of the entity that
digitally signed it. By following the trust tree to a known trusted third party,
namely CARoot, one can be assured that the certificate is valid if it is able to
pass the rigorous verification of the certificate authority at each level of the
PKI tree. This has been proved to be efficient in [140]. Figure 3.2 illustrates
the hierarchy of trust.

All certificates must be verified through this structure. CARoot is the
topmost level of certificate authority, and every principal should trust its re-
liability. For instance, a customer certificate is linked to the certificate of the
issuer. The issuer’s certificate is linked back to a CARoot key through the
Brand’s certificate. Because all participants know the public signature key of
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Fig. 3.2. PKI tree of Trust

the CARoot, it may be used to verify each of the certificates in turn. The
number of levels shown in this diagram is illustrative only. In practical trans-
actions, a customer may not always verify the certificate through complete
certificate authority. Thus we use the chain of trust, CA={CA1, CA2, . . . ,
CARoot}, to express the related certificate authority in a general way. We do
not care which authority appears in the chain of trust. The initial level in the
certificate indicates which Certificate Authority created the certificates, and
GCA indicates the Brand Geo-political CA.

At each stage of a protocol session, every principal has a finite set of
received data items that it had before the session began, or that were extracted
from the messages sent to it before, or during the current stage. However the
potential set of information is infinite.

Also, if principal A authenticates the messages m sent from principal B,
then A believes m. This indicates that principal A has enough confidence in
message m. Although this confidence may not be very high, A still believes m
is true.

After receiving a message, the principal starts verifying the message using
inference rules and related axioms. The messages and verification form the
initial set of received data items and their confidences for processing next
time. During the verification, if the principal cannot conclude that ‘principal
B knows message m’, then the principal believes ‘B does not know m’.

To explore a flaw-free protocol, a logic, written as NDL (non-monotonic
dynamic logic), has been established in [6]. The NDL is a natural and prac-
tical analysis strategy for the verification of security protocols. It has well-
integrated techniques taken from single-rank logic, dynamic logic and non-
monotonic logic, for efficiently identifying flaws. However, the NDL has been
unable to accommodate the actual circumstances of secure transaction pro-
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tocols such as data integrity. A logical framework ENDL is then developed
to deal with the above issues. For simplicity, it assumes that all principals
involved in a transaction do not divulge their secret, especially the root of
the certificate issuer. Also, it assumes that the cryptographic algorithms and
communication protocols are sound.

3.4 Basic Terms and Statements

This section presents formal definitions for the function word, predicate and
action, which are used for building our ENDL logic as follows:

Principal is some participant who carries out the protocol.
Uppercase X, Y, A, B, C, and CA (Certificate Authorities) range over
particular principals.
m1, m2, . . . , and mn denote specific messages. (Here, keys and the en-
crypted messages are viewed as messages either.)
T denotes a specific timestamp that can be used to authenticate the va-
lidity of message and to assert that the message is created for a current
session.
Cert denotes the certificate that needs to be verified.
CertReq denotes the registration form of the request for certificate.
k denotes the encryption, or decryption, keys.
Generate and Send denote specific actions. (Encryption and digital signa-
ture etc. are some mapping operations on messages, but not actions.)
P and Q denote formulae, on which the infrastructure of ENDL can be
constructed by employing the following components:

Knowledge state is applied to denote a specific knowledge relationship be-
tween principals and messages within the period of protocol execution. For
instance, Alice knows message m sent by Bob implies two kinds of relation-
ships: one is the recipient Alice receives and knows m, and the other is the
initiator Bob sent m.

Fresh is applied to a process and asserts this term was created for a current
session but not recorded from an earlier session. A principal believes a term is
fresh if it can identify the term as created for the current session whenever this
term comes into its possession. To consider the possibility that communication
keys may be compromised in an open network and the timestamp may prevent
replays, timestamp T is introduced for ensuring freshness of message. If the
clock synchronization of both parties is difficult, a trusted third party can
intervene as a notary and uses its own clock as a reference [87, 143]. Actually,
the timestamp has the additional benefit of replacing the two-step handshake
in the Needham and Schroeder protocol for a public key system, but the
exposure of a user’s private keys cannot be eliminated by the timestamp.
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Unless compromises are reported to the AS (authentication server) and public
keys are obtained from the AS immediately prior to use, timestamps can be
useful for validating the time integrity of keys [40].

Identification is the process of ascertaining the identity of a participant
by relying on uniquely distinguishable features, known as identifier ID. This
contrasts with authentication, which is the confirmation that the distinctive
identifier indeed corresponds to the declared user. The recipient proposes pri-
vately the verifier a secret that is shared only with the sender, of which au-
thentication and identification take place simultaneously, such as a password
or a secret encryption key.

Authentication denotes specific belief relations. The purpose of authen-
tication of participants is to reduce, if not eliminate, the risk that intruders
might masquerade under legitimate appearances to pursue unauthorized op-
erations.

Integrity is applied to guarantee that messages come from the purported
sender, and that the message content is not alerted during transmission be-
tween the originator and the recipient. Both integrity and authentication can
be ensured by using digital signature.

Random number: Detection of duplication and replay is achieved with
the use of a random number, namely Rnd, before encryption.

Confidentiality: Applied to guarantee that information is safe and can
only be accessed by the intended recipients. It is realized by encryption.

Function word: The abstract description of the operations on a message.
They consist of encryption, signature, message digest, and associated mapping
relation of the key.

e(m, k): This represents the operation that message m is encrypted by
the symmetric (communication) key k.
E (m, k): This represents the operation that message m is encrypted
by the public key k, namely Kpb(X ) and Spb(X ) listed below.
S (m, k): This represents the operation that message m is encrypted
by the private key k, namely Kpv(X ) and Spv(X ) listed below.
H (m): This represents the message digest of message m encoded by the
one-way hashing algorithm H (x ). The one-way Hash function has the
property that, given the output, it is difficult to determine the input.
Kpb(X ): This represents the public key-exchange key of X.
Kpv(X ): This represents the private key-exchange key of X.
Spb(X ): This represents the public signature key of X.
Spv(X ): This represents the private signature key of X.
<m1, . . . , mn>: This represents the combination of messages m1,. . . ,
and mn.
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Although Kpv(X ) and Kpb(X ) are restricted to exchanging asymmetric keys
in this chapter, they actually can be used for confidential exchange of any
message.

When the message digest of a message is encrypted using a sender’s private
key, and is appended to the original message, the result is known as the dig-
ital signature of the message (see abbreviation below.) The function word is
the infrastructure necessary to describe the complicated cryptographic oper-
ations. Moreover, the related cryptographic algorithms used to construct the
encryption and decryption are basically believed to be robust, but we cannot
absolutely exclude the possibility that some intelligent attackers can intercept
the message and break down the encryption successfully within, or before, the
expiry date. For simplicity, this chapter primely demonstrates how to apply
our approach to verify security protocols.

Action is applied to describe the communication process in which a prin-
cipal is the executant of the action and tries to execute some appointed tasks.
There are two types of actions below:

Generate(X, m): Applied to represent that X generates the message
m.
Send(X, Y, m): Applied to represent that X sends the message m to
Y after X generated the message m successfully.

Applying the conventional logic operator can derive further actions. Suppose
α and β are basic action sequences, then α o β denotes the conjunction of α
and β, and can be treated as an action sequences (see Inference Rule below).
According to the requirements of analysis of the practical secure transaction
protocols, we are able to add new actions.

Predicate is applied to express the knowledge state and belief relation of
principals. There are four kinds of predicate:

Know(X, m): This represents that X knows message m. It is possible
that X generates the message m or receives m from Y. However, some
malicious attacks can make X forget message m even within its period
of validity, which will be described later.
Auth(X, Y, m): This represents that X authenticates message m sent
by Y and m has not been modified. If X can authenticate the message
m is valid, then the return value is true; otherwise the return value is
false.
IsVerified(X, Cert): This represents that, if X can verify the Cert is
valid, then it returns true, otherwise it returns false.
Equal(m, m′): This represents that, if message m is equal to message
m′, then it returns true, otherwise it returns false.

Assertion

P 	α Q
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P and Q present a set of formulae; and α denotes a series of actions. This
assertion denotes that if the premise P is true then α can be executed, and
the conclusion Q will be true if α can be performed successfully. Let P1 and
P2 be formulae, then the followings are also regarded as formulae:

P1 ∧ P2 : P1 and P2

P1 ∨ P2 : P1 or P2

P1 −→ P2 : P1 implies P2

‘∧’, ‘∨’, and ‘−→’ are some traditional logical operators. We also imply some
notations from set theory. Suppose we have a formula P = P1 ∧ P2. We can
say P ∈ P1 and P ∈ P2, which means P is the intersection of P1 and P2.
Similarly, suppose the formula is P = P1 ∨ P2, we can say P ∈ P2 or P ∈ P2,
which means P is the union of P1 and P2.

Abbreviation

We define four expressions, abbreviated to simplify the conjunctions of sev-
eral function words, since these conjunctions repeatedly appear in this logical
system. The following abbreviations, in fact, imply complex cryptographic
operations, digital signature, message digest and the like.

Sign(X, m)=<m, S (<IDX , H (m)>, Spv(X ))>: This means that plain
text m and X ’s identifier IDX are attached to X ’s digital signature.
Sign(X,m)T = <m, S (<IDX , T, H (m)>, Spv(X ))>: Inserting the times-
tamp T into Sign(X, m).
S0(X, m)= S (<IDX , H (m)>, Spv(X )): This means that identifier IDX

was attached to X ’s digital signature before X encrypted the message
digest of m in the private signature key Spv(X ).
S0(X,m)T = S (<IDX , T, H (m)>, Spv(X )): Inserting the timestamp T
into S0(X, m).
CertK (X ) = Sign(CA, <X, Kpb(X )>): This means that the key-exchange
certificate of X.
CertS (X ) = Sign(CA, <X, Spb(X )>): This means that the signature cer-
tificate of X.
Verify(X, Cert, <CA1, . . ., CARoot>): Here X verifies certificate Cert by
traversing the trust chain, CA1, CA2, . . ., to the root CARoot(see above
under PKI tree).

3.5 Logical Framework and Statement of ENDL

This section proposes the ENDL framework, including its axioms and inference
rules; and the inference format comprising the accumulation property.
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3.5.1 Axiom

(1)Encryption
1-1Know(X, m) ∧ Know(X, k) −→ Know(X, e(m, k))

This means that, if X knows message m and communication key k, then
X knows e(m, k) by using k to encrypt message m. It is unnecessary for
X to be concerned with the reliability of message m and key k. Since X
knows m and k, there is no doubt that X can know e(m, k). Another
kind of encryption, namely public key-exchange key encryption, can be
expressed by the following formula:

1-2Know(X, m) ∧ Know(X, Kpb(Y )) −→ Know(X, E (m, Kpb(Y )))
This means that, if X knows message m and public key-exchange key
Kpb(Y ) of Y, then X knows E (m, Kpb(Y )) by using Kpb(Y ) to en-
crypt message m.

1-3Know(X, m) ∧ Know(X, Spv(Y )) −→ Know(X, S (m, Spv(Y )))
This means that, if X knows message m and private signature key
Spv(Y ) of Y, then X knows S (m, Spv(Y )) by using Spv(Y ) to encrypt
message m.

In a practical transaction, protocol could be insecure when user’s keys are
compromised. To solve this issue, a method using timestamp T has been
proposed by Denning [40]. Along with other information the messages that
need to be protected are appended with a timestamp before encryption.
Also, Gong has proposed a security risk of depending on synchronized
clocks [61]. According to Gong, clocks can become unsynchronised due
to sabotage on, or faults in, the clocks themselves or the synchronization
mechanism. Thus, security can be jeopardised by overflows and the depen-
dence on potentially unreliable clocks on remote sites. Despite this, this
framework still uses the assumption of a network of synchronized clocks.
Therefore, it assumes that a faulty clock can be resynchronised efficiently.

(2)Key Allocation
2-1Know(X, Kpb(CARoot))

That is all principals of security protocol know the public key-exchange
key of CARoot.

2-2Know(X, Spb(CARoot))
That is all principals of security protocol know the public signature
key of CARoot.

2-3Know(X, Kpv(X ))
That is X knows its own private key-exchange key. It is computation-
ally unfeasible for anybody to deduce it from the public key-exchange
key.

2-4Know(X, Kpb(X ))
That is X must know its own public key-exchange key.
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2-5Know(X, Spv(X ))
That is X knows its own private signature key. It is computationally
unfeasible for anybody to deduce it from the public signature key.

2-6Know(X, Spb(X ))
That is X must know its own public signature key.

(3)Decryption
3-1Know(X, k) ∧ Know(X, e(m, k)) −→ Know(X, m)

That is, if X knows communication key k and e(m, k), then X knows
the plain text of message m by using k to decrypt e(m, k).

3-2Know(X, Kpv(Y )) ∧ Know(X, E (m, Kpb(Y ))) −→ Know(X, m)
That is, if X knows private key-exchange key Kpv(Y ) and E (m,
Kpb(Y )), then X knows the plain text of message m by using the
private key-exchange key Kpv(Y ) to decrypt E (m, Kpb(Y )).

3-3Know(X, Spb(Y )) ∧ Know(X, S (m, Spv(Y ))) −→ Know(X, m)
That is, if X knows the public signature key Spb(Y ) of Y and S (m,
Spv(Y )), then X knows the plain text of message m by using the public
signature key Spb(Y ) of Y to decrypt S (m, Spv(Y )).

Contrasting with the encryption operation, decryption is a reverse process.
It may be worth examining whether the message, if transmitted in an open
network, can suffer from a malicious attack (e.g. masquerading, replay,
and eavesdropping) when a user is receiving an encrypted message. A user
must decrypt it, and then try to verify whether the result can be trusted
or not. All these processes must conform strictly to the requirements of
the security protocol.

(4)Signature
4-1Know(X, m) −→ Know(X, H (m))

That is, if X knows m, then X knows H (m).
4-2Know(X, m) ∧ Know(X, Spv(Y )) −→ Know(X, S (H (m), Spv(Y )))

That is, if X knows message m and private signature key Spv(Y ) of Y,
then X knows the message digest H (m) (derived from axiom 4-1) and
S (H (m), Spv(Y )) by using Spv(Y ) to encrypt H (m) (derived from
axiom 1-3).

Exposure of private keys in public key systems poses a serious threat. If a
user’s private key is exposed, all messages encrypted by the corresponding
public key may be compromised. In addition, an attacker will also be
able to sign messages on behalf of the user. There are two possibilities:
exposure of user’s private keys and exposure of the private key used by
the certificate authority to sign certificates. Section 3.5.4 will show that
this logic uncovers some known flaws in security protocols.
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(5)Authentication
5-1Know(X, m) ∧ Know(X, S (<IDY , T, H (m)>, Spv(Y ))) ∧

Know(X, Spb(Y ))
|Clock−T |<
�t1+�t2−−−−−−−→ Auth(X, Y, m)

This means that, if X knows message m, S (<IDY , T, H (m)>, Spv(Y ))
and Spb(Y ), then X can authenticate that Y sent m, and m has not
been modified by using Spb(Y ) to verify S (<IDY , T, H (m)>, Spv(Y ))
(derived from axiom 3-3) and then comparing the result with a newly
generated message digest of m. Simultaneously, X verifies that a mes-
sage is not replayed by checking that |Clock -T |<�t1+�t2, where
Clock is the local time, �t1 is an interval representing the normal dis-
crepancy between the server’s clock and the local clock, and �t2 is an
interval representing the expected network delay time [40].

5-2Know(X, m) ∧ Auth(X, Y, H (m)) −→ Auth(X, Y, m)
This means that, if X knows message m and authenticates that Y
actually sent H (m), and that it has not been modified, then X can
authenticate that Y actually sent m, and m has not been modified. In
this formula, it is unnecessary to add the predicate for expressing that
X knows the public signature key Spb(Y ) of Y , since X is convinced
of the validity of H (m).

5-3Know(X, Spb(Y )) ∧ Know(X, S (<Y, T, Spb(Y )>, Spv(CA))) ∧

Know(X, Spb(CA))
|Clock−T |<
�t1+�t2−−−−−−−→ Auth(X, Y, Spb(Y ))

That is, if X knows Spb(Y ), and S (<Y, T, Spb(Y )>, Spv(CA)), then
X can authenticate Spb(Y ) by using the public signature key of CA to
verify the encrypted message and checking the timestamp and identity
included in the message.

(6)Separation
6-1Know(X, <m1, . . . ,mn>) ←→ Know(X, m1) ∧ . . .∧ Know(X, mn)

This means that, if X knows a compound message <m1, m2, . . . . . .,
mn>, then X should know every component of it. The reverse is also
true, since X knows each of them, X can combine them to form a new
group of messages.

6-2Auth(X, Y, <m1, . . ., mn>)−→Auth(X, Y, m1) ∧ . . .∧ Auth(X, Y,
mn)
That is, if X authenticates that Y ever sent a compound message <m1,
m2, . . . . . ., mn> that has not been modified, then X authenticates
that Y ever sent every element of it and none of it has been modified.
The reverse is not true since X may authenticate each message at a
different time but the belief on them can change as time passes, thus
X cannot authenticate the compound message <m1, m2, . . . . . ., mn>

even though it could authenticate its every component beforehand.
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(7)PKI
7-1Know(X, CertS (Y )) ∧ Verify(X, CertS (Y ), CA) ∧

IsVerified(X, CertS (Y ))−→ Auth(X, CA, <Spb(Y ), Spv(Y )>)
This means that, if the signature certificate of Y, CertS (Y ), issued
by CA (certificate authority) is verified successfully by X, then X can
authenticate that the public signature key Spb(Y ) of Y is valid and
issued by CA.

7-2Know(X, CertK (Y )) ∧ Verify(X, CertK (Y ), CA) ∧
IsVerified(X, CertK (Y )) −→ Auth(X, CA, <Kpb(Y ), Kpv(Y )>)
This means that, if the key-exchange certificate CertK (Y ) of Y issued
by CA is verified successfully by X, then X can authenticate that the
public key-exchange key Kpb(Y ) of Y is valid and issued by CA.

These two axioms are used to describe how a principal verifies the CA
certificate by traversing the hierarchy of the trust chain to the CARoot.
Once the certificate is authenticated, the user will hold a copy of the
certificate to use later.
Below, two theorems for the logic are described. They will be used in the
construction of the next lot of inference rules.

Theorem 3.1. If a principal X knows a message m, and the public signature
key of Y and Y’s digital signature on m which includes timestamp T, then X
may authenticate that the message m is sent by Y and has not been modified.

Know(X, m) ∧ Know(X, Spb(Y )) ∧ Know(X, S0(Y, m)T ))
|Clock−T |<
�t1+�t2−−−−−−−→

Auth(X, Y, m)

[Proof]:

(1) Know(X, m) [premise]
(2) Know(X, S0(Y, m)T ) [premise]
(3) Know(X, Spb(Y )) [premise]
(4) Know(X, S (<IDY , T, H (m)>, Spv(Y ))) (2)[definition]
(5) Auth(X, Y, m) (1)(3)(4)[5-1]
(6)Know(X, m) ∧ Know(X, S0(Y,m)T ) ∧ Know(X, Spb(Y ))−→

Auth(X, Y, m) (1)(2)(3)(5)[ → +]
The proof can easily be constructed by using the authentication axiom 5-1
and the definition of S0(Y,m)T , which is an equivalent expression of S (<IDY ,
T, H (m)>, Spv(Y )).

Theorem 3.2. If a principal X knows the public signature key of Y and Y’s
digital signature on m, which includes timestamp T, then X can authenticate
that the message m is sent by Y and has not been modified.

Know(X, Spb(Y )) ∧ Know(X, Sign(Y, m)T )
|Clock−T |<
�t1+�t2−−−−−−−→ Auth(X, Y, m)
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[Proof]:

(1)Know(X, Sign(Y, m)T ) [premise]
(2) Know(X, Spb(Y )) [premise]
(3) Know(X, <m, S (<IDY , T, H (m)>, Spv(Y ))>) (1)[definition]
(4) Know(X, m) (3)[6-1]
(5) Know(X, S (<IDY , T, H (m)>, Spv(Y ))) (3)[6-1]
(6) Know(X, S 0(Y,m)T ) (5)[definition]
(7) Auth(X, Y, m) (2)(4)(6)[Theorem 3.1]
(8) Know(X, Sign(Y, m)T ) ∧ Know(X, Spb(Y )) −→ Auth(X, Y, m)

(1)(2)(7)[→ +]
This proof of Theorem 3.2 is directly derived from the separation axiom 6-
1, the definition of Sign(Y, m)T , which is an equivalent expression of <m,
S (<IDY , T, H (m)>, Spv(Y )), and the definition of Theorem 3.1.

The above two simple theorems are common processes in security protocols
and provide a compendious and perspicuous way to describe the operation of
digital signature.

3.5.2 Inference Rules

As already described, the inference rules of NDL consists of (R-1) Revela-
tion, (R-2) Generation, (R-3) Accumulation, (R-4) Union, and (R-5) Non-
monotonic. In ENDL logic, all the inference rules except for Accumulation
keep consistent with NDL. However, it sorts the original accumulation rule
into several categories in light of the potential message lost and attacks.

In our former work [27], it assumed that the key cannot be altered and the
principals have the property of memory to message m, but the key, in fact,
can be altered and the principal may not possess memory to m. Thus, the
accumulation rule (R-3) is classified according to the circumstance that can
possibly happen in a practical e-commerce environment.

(1) Some of k, <Spb(X ), Spv(X )> and <Kpb(X ), Kpv(X )> are altered, but
the principal has memory to message m.

(2) None of k, <Spb(X ), Spv(X )> and <Kpb(X ), Kpv(X )> are altered, but
the principal has no memory to message m.

(3) Some of k, <Spb(X ), Spv(X )> and <Kpb(X ), Kpv(X )> are altered, and
the principal has no memory to message m.

(4) None of k, <Spb(X ), Spv(X )> and <Kpb(X ), Kpv(X )> are altered, and
the principal has memory to message m.

If all the keys are not altered and the principal has memory to message m,
thus we may still apply the accumulation rule (R-3) and do not need to be
concerned about the possibilities described above.
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In circumstance (1), principal X randomly alerts cryptographic keys, k
or <Spb(X ), Spv(X )> or <Kpb(X ), Kpv(X )>, and lets Y know the exact
key after alteration. The accumulation rule (R-3) can still be applied since
the principals X and Y, have memory to message m, which helps them to
recall message m. However, if X alters the cryptographic keys, k or <Spb(X ),
Spv(X )> or <Kpb(X ), Kpv(X )>, and does not let Y know the correct key
promptly, then the knowledge of Y on the former cryptographic keys is invalid.
Thereby, the accumulation rule (R-3) cannot be used again.

Based on the above two particular circumstances, four corresponding rules
can be deduced as shown below.

(R-I-1) Accumulation 1

P �αQ, Generate(X, newkey), Know(Y, newkey)
P �αoGenerate(X, newkey) Q

That is, if X alters the former cryptographic keys, generates newkey, and
lets the corresponding principal know them, then the conclusion Q that has
been proved to be true remains correct after the action α o Generate(X,
newkey), which consists of Generate() and Send(), and so forth. In this rule,
newkey may only be any combination of k, Spb(X ) and Kpb(X ) because the
private signature key Spv(X ) and private key-exchange key Kpv(X ) cannot
be disclosed to Y since they contain personal privacy that must be kept secret
to other principals.

In circumstance (3), if only X does not alter the message, this rule can
actually be applied to this special instance.

(R-I-2) Accumulation 2

P �αQ, Generate(X, <newkey, m>), Know(Y, newkey), Equal(m, m′)
P �αoGenerate (X, <newkey, m>) Q

That is, if X changes the former cryptographic keys, k or <Spb(X ), Spv(X )>
or <Kpb(X ), Kpv(X )>, and message m ′, and lets Y know the newkey, then,
if m is equal to m ′, the conclusion Q that has been proved to be true keeps
correct after the action α o Generate(X,<newkey, m>). The action consists of
Generate() and Send() and so forth. Because the principals have memory for
message m ′ so Y can easily compare m ′ with m. In this rule, newkey may only
be any combination of k, Spb(X ), Kpb(X ) because the private signature key
Spv(X ) and private key-exchange key Kpv(X ) cannot be disclosed to Y since
they have personal privacy that must be keep secret from other principals.

(R-I-3) Accumulation 3

P �αQ, Generate(X, <newkey, m>), Know(Y, newkey), ⇁Equal(m, m′)
P |∼αoGenerate (X, <newkey, m>) ⇁Q
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That is, if X changes the former cryptographic keys k or <Spb(X ), Spv(X )>
or <Kpb(X ), Kpv(X )>, and message m ′, and lets Y know the newkey, then
if m is not equal to m ′, we can say non-monotonically that conclusion Q
that has been proved to be true is incorrect after the action α o Generate(X,
<newkey, m>).

(R-I-4) Accumulation 4

P �αQ, Generate(X, newkey), ⇁Know(Y, newkey)
P |∼αoGenerate(X, newkey) ⇁Q

This means that, if X alters the cryptographic keys k or <Spb(X ), Spv(X )>
or <Kpb(X ), Kpv(X )>, and does not let Y know the newkey that is created
by X, then we can say non-monotonically that the conclusion Q which has
been proved to be true is not correct any more after the action α o Generate(X,
newkey), which consists of Generate() and Send(), and so forth.

In circumstance (2), corresponding rules are listed below.

(R-II-1) Accumulation 5

P �αQ, Generate(X, m), Know(Y, <m′, m>), Equal(m, m′)
P �αoGenerate(X, m) Q

That is, if X creates a new message m and let Y know m and m ′ since the
principals have no memory to m ′, then, if the contents of m remain the same
as the message m ′ that was formerly produced, the conclusion Q still stays
true after the action α o Generate(X, m). Thus, message m represents the
combination of m1, m2, . . ., and mn.

(R-II-2) Accumulation 6

P �αQ, Generate(X, m), ⇁Know(Y, <m′, m>)
P |∼αoGenerate (X, m) ⇁Q

That is, if X creates a new message m, but does not let Y know what has been
changed about m′, then we can say non-monotonically that the conclusion Q
does not remain true after the action α o Generate(X, m).

For circumstance (3), several rules are described as follows.

(R-III-1) Accumulation 7

P �αQ, Generate(X, <newkey, m>), Know(Y, <newkey, m, m′ >), Equal(m, m′)
P �α oGenerate(X, <newkey, m>) Q
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This means that, if principal X alters the cryptographic keys, k or <Spb(X ),
Spv(X )> or <Kpb(X ), Kpv(X )>, and the message, and lets Y know the
newkey, m ′ and m, then, if the contents of message m produced by X cor-
respondingly remains the same as the message m ′ which was created origi-
nally, then the conclusion Q still stays true after the action α o Generate(X,
<newkey, m>).

(R-III-2) Accumulation 8

P �αQ, Generate(X, <newkey, m>), Know(Y, <newkey, m, m′ >), ⇁Equal(m, m′)
P |∼αoGenerate(X, <newkey, m>) ⇁Q

This means that, during the execution of the protocol, if X alters the cryp-
tographic keys, k or <Spb(X ), Spv(X )> or <Kpb(X ), Kpv(X )>, and the
message, and lets Y know the newkey, m ′ and m, then, if the contents of
message m that is produced currently by principal X do not keep the same as
message m ′, then we can say non-monotonically that the conclusion Q does
not keep true after action α o Generate(X, <newkey, m>).

(R-III-3) Accumulation 9

P �αQ, Generate(X, <newkey, m>), ⇁Know(Y, newkey)
P |∼αoGenerate (X, <newkey, m>) ⇁Q

This means that, during the execution of the protocol, if X alters the
cryptographic keys, k or <Spb(X ), Spv(X )> or <Kpb(X ), Kpv(X )>, and
the message, and does not let Y know the newkey, then we can say non-
monotonically that the conclusion Q does not stay true after the action α o

Generate(X,<newkey, m>), which consists of Generate() and Send(), and so
forth.

(R-III-4) Accumulation 10

P �αQ, Generate(X, <newkey, m>), ⇁Know(Y, <m′, m>)
P |∼αoGenerate (X, <newkey, m>) ⇁Q

This means that, during the execution of the protocol, if X alters the cryp-
tographic keys, k or <Spb(X ), Spv(X )> or <Kpb(X ), Kpv(X )>, and the
message, and does not let Y know what has been changed about the mes-
sage m ′, then we can say non-monotonically that the conclusion Q does not
stay true after the action α o Generate(X, <newkey, m>), which consists of
Generate() and Send(), and so forth.
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(R-III-5) Accumulation 11

P �αQ, Generate(X, newkey), ⇁Know(Y, newkey)
P |∼αoGenerate(X, newkey) ⇁Q

This means that, during the execution of the protocol, if X alters the cryp-
tographic keys, k or <Spb(X ), Spv(X )> or <Kpb(X ), Kpv(X )>, and does
not let Y know the newkey, then we can say non-monotonically that the
conclusion Q does not reamin true after the action α o Generate(X, newkey).

There is still one more possible situations in circumstance (3). This has
been introduced at the end of R-I-1. In this instance, R-I-1 can be used to
describe it.

For circumstance (4) two rules are generated accordingly:

(R-IV-1) Accumulation 12

P �αQ, Generate(X, m), Equal(m, m′)
P �αoGenerate(X, m) Q

This means that, during the execution of the protocol, if X alters message m,
but the contents of message m that is produced at the same time by principal
X remain the same as message m′, then we can say that the conclusion Q
stays true after action α o Generate(X, m), since the principals have memory
to message m ′.

(R-IV-2) Accumulation 13

P �αQ, Generate(X, m), ⇁Equal(m, m′)
P |∼αoGenerate(X, m) ⇁Q

This means that, during the execution of the protocol, if X alters message m,
but the contents of message m that is produced at the same time by principal
X does not keep the same as message m′, then we can say non-monotonically
that the conclusion Q does not stay true after action α o Generate(X, m)
since the principals have memory to message m ′.

The accumulation rules synthetically described above take into account
the possibility that might happen with regard to practical e-commerce. Mean-
while, it is also necessary to point out some of the disadvantages of certain
notations, such as the expression of cryptographic keys. It would appear that
these notations might never be altered after designating the principal X. In
fact, they may be altered constantly, along with the change of time, so if we
want the definition of these rules to become more accurate, the current nota-
tion system needs to be improved further. In this chapter, it assumes that all
the notations keep the same content and meaning as the original. Exceptions
to this will be discussed in future work.
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3.5.3 Inference Format

This inference format stems from the accumulation property described above
where ε, α1, α2, . . ., αn and fij express a sequence of actions and a set of
formulae, respectively.

ε (empty sequence of action)
f01, f02 . . .f0m0

α1

f11, f12 . . .f1m1

α2

f21, f22 . . .f2m2

...
αn

fn1, fn2 . . .fnmn

The above expressions can be compressed by using an assertion to describe
the procedure of deduction. The union of formulae is derived from the defi-
nition of the assertion. For instance, {f01, f02 . . .f0m0} is a formula, so each
f0i (0≤ i ≤ m0) is a subset of this formula. Furthermore, the synthesis of
assertion is, in fact, derived from inference rules R-3 and R-4. This format
can be described by another expression as shown below:

{f01, f02 . . .f0m0} 	 α1 {f11, f12 . . . . . .f1m1}
{f01, f02 . . .f0m0} 	 α1 · α2 {f21, f22 . . . . . .f2m2}

...
{f01, f02 . . .f0m0} 	 α1 · α2 · . . . . . . · αn {fn1, fn2 . . . . . .fnmn}

This inference format is based on the accumulation and dynamic properties of
security protocols. It is well known that a message can be modified or inter-
cepted during transmission, so an eavesdropper can impersonate the sender or
receiver and continue the transaction. In this chapter, it assumes that these
problems can be detected and are protected by existing technologies such as
[40, 70, 92]. Therefore, we do not need to be too concerned about the network
communication, eavesdropping, hashing and encryption algorithms. Thus, this
chapter focuses on how the ENDL may be used for the verification of secure
transaction protocols, rather than how to construct a secure protocol.

3.5.4 Verification Instances of Security Protocols in ENDL

To evaluate the framework ENDL, three instances are used to demonstrate
the use of the ENDL when verifying a security protocol.

Example 3.1. Distribution of Public keys in Needham and Schroeder’s
protocol.
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A timestamp can be added to Needham and Schroeder’s protocols for public
key systems. This was proposed by Denning [40]. In this instance, it shows
that our logic is also able to detect a known flaw in the protocol.

The protocol opens with A consulting the authentication server AS in the
clear to find B ’s public key. The exchange can be described in a series of
actions.

A→AS : α1 =Send(A, AS, <A, B>) (1.1)
AS→A: α2 =Send(AS, A, S (<B, Spb(B)>, Spv(AS ))) (1.2)
A→B : α3 =Send(A, B, E (<IDA, A>, Spb(B))) (1.3)
B→AS : α4 =Send(B, AS, <B, A>) (1.4)
AS→B : α5 =Send(AS, B, S (<Spb(A), A>, Spv(AS ))) (1.5)
B→A: α6 =Send(B, A, E (<IDA, IDB>, Spb(A))) (1.6)
A→B : α7 =Send(A, B, E (IDB , Spb(B))) (1.7)

where Spv(AS ) denotes AS ’s private signature key and Spb(B) is B ’s public
signature key. A is presumed to know AS ’s public signature key (derived from
axiom 2-2) since AS is an authority.

We start the verification from the goal Auth(A, AS, Spb(B)) and let
CK=<B, Spb(B)>. Formula P denotes the set of premise; α is the com-
bination of a series of action; and formula Q denotes the object we want to
verify.

P = {Know(A, Spb(AS ))},
α= {Generate(A ,<A, B>) o α1 o Generate(AS, S (CK, Spv(AS ))) o

α2 o Generate(A, E (<IDA, A>, Spb(B))) o α3}
Q = {Auth(A, AS, Spb(B))}.

Proof:
(1) Know(A, Spb(AS )) [2-2]
(2) Generate(A, <A, B>) [action]
(3) Know(A, <A, B>) (2)[R-2]
(4) Send(A, AS, <A, B>) (3)[1.1]
(5) Know(AS, <A, B>) (4)[R-1]
(6) Know(AS, B) (5)[6-1]
(7)Generate (AS, S (CK, Spv(AS )))
(6)[2-4][action]
(8) Know(AS, S (CK, Spv(AS ))) (7)[R-2]
(9) Send(AS, A, S (CK, Spv(AS ))) (8)[1.2]
(10) Know(A, S (<B, Spb(B)>, Spv(AS )) (9)[R-1]
(11) ⇁ Auth(A, AS, Spb(B)) (1)(3)(10)[5-3][R-5]

The final conclusion is that we cannot reach the goal Auth(A, AS, Spb(B))
since the existing conditions do not satisfy the requirement of axiom (5-3). Ac-
cording to the non-monotonic rule (R-5), we may conclude non-monotonically
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that A does not believe the validity of Spb(B) encrypted by AS. The reason
this flaw works is because the intruder was able to intercept the message from
(4) and (9) and replay the encrypted component from message (10). The weak-
ness that allowed the attack lies in the fact that this protocol did not add a
timestamp to step (9). This would have made the recipient suspect that the
message was a replay [40].

Due to the non-monotonic property, the authentication here contains only
eleven steps, thereby ENDL is more efficient than other logics.

Example 3.2. Case 1 of Cardholder Registration in SET protocol.

From SET protocol, a simple process of registration is intercepted. It starts
when the cardholder C receives an initial response sent by CA. There are
two principals in this instance: cardholder C and certificate authority CA.
CA, in fact, consists of several levels of certificate authority, as described in
Figure 3.2. In this instance, some of the new notations will be used to describe
this particular verification.

CA→C : α1=Send(CA, C, <CertS (CA), CertK (CA), InitRes,
S (H (InitRes), Spv(CA))>) (2.1)

C→CA: α2= Send(C, CA, <e(RegFormReq, k),
E (<PAN, k>, Kpb(CA))>) (2.2)

CA generates response InitRes and digitally signs it. It then sends the re-
sponse along with the CA certificate to C. After verifying the CA certificate,
C generates registration form RegFormReq and encrypts the message with a
randomly generated symmetric key k. This key, along with the C ’s primary
account number (PAN), is then encrypted with Kpb(CA). Only the CA, C,
and the Issuer know PAN, which is effectively obfuscated by using a blinding
technique [19]. Then C transmits these messages to CA; CA decrypts key k
and the cardholder’s PAN with Kpv(CA). It then decrypts the RegFormReq,
using k. Eventually, CA determines the appropriate registration form, and
digitally signs it by using Spv(CA). It then sends them to C.

The verification starts with the goal Auth(C, CA, <Spv(CA), Spb(CA)>)
and Auth(C, CA, <Kpv(CA), Kpb(CA)>). The definitions of P, α and Q have
the same meaning as above.

P = {Know(C, Spb(CA))},
α = Generate(C, InitRes) o

Generate(CA, <CertS (CA), CertK (CA), InitRes,
S (H (InitRes), Spv(CA))>) o α1 o Verify(C, CertS (CA), CA) o
Verify(C, CertK (CA), CA) o Generate(C, RegFormReq) o
Generate(C, PAN ) o Generate(C, k) o α2

Q = {Auth(C, CA, <Spb(CA), Spv(CA)>), Auth(C, CA, <Kpb(CA),
Kpv(CA)>), Auth(C, CA, InitRes)}
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Proof:
(1) Know(C, Spb(CA)) [2-2]
(2) Generate(CA, InitRes) [action]
(3) Know(CA, InitRes) (2)[R-2]
(4) Generate(CA,<CertS (CA), CertK (CA), InitRes, S (H (InitRes),

Spv(CA))>) (3)[2-4][action]
(5) Know(CA, <CertS (CA), CertK (CA), InitRes, S (H (InitRes),

Spv(CA))>) (4)[R-2]
(6) Send(CA, C, <CertS (CA),CertK (CA),InitRes, S (H (InitRes),

Spv(CA))>) (5)[2.1]
(7) Know(C, <CertS (CA), CertK (CA), InitRes, S (H (InitRes),

Spv(CA))>) (6)[R-1]
(8) Know(C, CertS (CA)) (7)[6-1]
(9) Know(C, CertK (CA)) (7)[6-1]
(10) Know(C, S (H (InitRes), Spv(CA))) (7)[6-1]
(11) Verify(C, CertS (CA), CA) [abbreviation]
(12) IsVerified(C, CertS (CA)) [discriminant]
(13) Auth(C, CA, <Spb(CA), Spv(CA)>) (8)(11)(12)[7-1]
(14) Verify(C, CertK (CA), CA) [abbreviation]
(15) IsVerified(C, CertK (CA)) [discriminant]
(16) Auth(C, CA, <Kpb(CA), Kpv(CA)>) (9)(14)(15)[7-2]
(17) ⇁Auth(C, CA, InitRes) (1)(7)(10)[6-1][Theorem 3.1][R-5]

From steps (11) to (16), if the cardholder fails to validate the CA’s signa-
ture certificate or key-exchange certificate, the remaining verification will be
stopped automatically. The certificate chain is not applied in NDL, but it
is a very important component in Cardholder Registration. For the verifica-
tion of security protocols, the certificate chain is too complicated to describe
here. Meanwhile, if without passing the validation of certificate, we cannot
ensure that the private key used to sign a process is associated with the right
certificate authority, then we add this process to strengthen verification and
make it more compendious and reliable. During this verification, if C fails
to authenticate the validity of InitRes sent by CA, then the authentication
should be halted immediately owing to the non-monotonic rule (R-5), namely
fail-negate. Certainly, C will not send the registration form request to CA.
The flaw detected for InitRes encrypted by Spv(CA) does not include the
timestamp and identifier, so the intruder can replay this message in a later
transaction. This problem is common in the literature (For example in Syver-
son, 1994 [148]). The identifier is a random number and is used only once, but
the certificate is a long-term word. Actually, certificate cannot be relied upon
to be absolutely secure so the certificate is not a substitute for the identifier.

(1) C→Z (CA): InitReq
(2) Z (C )→CA: InitReq ′
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(3) CA→Z (C ): <CertS (CA), CertK (CA), InitRes ′, S (H (InitRes ′),
Spv(CA))>

(2′) Z (C )→CA: InitReq ′′

(3′) CA→Z (C ): <CertS (CA), CertK (CA), InitRes ′′, S (H (InitRes ′′),
Spv(CA))>

(4) Z (CA)→C : <CertS (CA), CertK (CA), InitRes ′, S (H (InitRes ′),
Spv(CA))>

Here, InitReq denotes the initial request sent by C to CA. The intruder Z
intercepts the initial request from C to CA and replaces it with a new initial
request initReq′. It then sends the result to CA as message (2). CA replies
with message (3). Z impersonates C to produce a new message (2′) and
sends it to CA. CA answers C with a corresponding message (3′), and then
Z intercepts it. At last, Z impersonates CA to send an outdated message
(4) that is intercepted by Z from message (3). C cannot authenticate the
message since it does not include a timestamp and identifier. This attack is
used continuously until C wants to bring about authentication between C
and CA again. An optional solution is to include timestamp and identifier in
the message sent by CA, even though you think certificate is secure. In fact,
the protocol designer must be very careful to detect every possible subtle
drawback when the protocol is in the design stage. Otherwise, if a protocol
with flaws is placed in practical environment, such as instant stock-trading.
It can cause a big economic loss if an intruder detects the flaws.

Example 3.3. Case 2 of Cardholder Registration.

C→CA: α1 = Send(C, CA, e(<m, S (H (m), Spv(C ))>, k3)) (3.1)
C→CA: α2 = Send(C, CA, E (<k3, AcctInf>, Kpb(CA))) (3.2)

After receiving the message sent by cardholder C, CA decrypts k3 and account
information AcctInf using Kpv(CA). Then it decrypts RegFormReg, using k3;
and CA determines the appropriate registration form RegForm, and digitally
signs it with Spv(CA). It then sends the registration form and CertS (CA) to
cardholder C. Let m = <CertReq, k2 , Spb(C )>.

There are two principals, C and CA, in this transaction. After validating
the registration form sent by CA, cardholder C creates one pair of signature
keys, Spv(C ) and Spb(C ). Meanwhile, C also creates two new symmetric key,
k2 and k3, and the certificate request CertReq, including the information en-
tered the registration form. Generally, it assumes that they do not alter the
keys and have memory to the message. However, we cannot exclude the possi-
bility that someone might modify the keys if: (1) the principal doubts that the
key may have been used to be replays by an eavesdropper, (2) the transaction
fails, and (3) the key is too old to use. On the other hand, the principal may
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also have no memory to the message it sent or received previously. Thus, the
former accumulation rule must be classified to verify possible security flaws.
The related keys and the message generated in this process are listed below:

Cryptographic keys: Spv(C ), Spb(C ), k2, k3

Message: CertReq

Based on the above keys and message, the following modifications are perhaps
conducted:

• C alters cryptographic keys, and notifies CA promptly before applying the
new keys.

• C alters them, but does not notify CA before applying the new keys.
• C generates CertReq again, and it stays the same as the old one.
• C generates CertReq again, but it does not keep the same as the old one.
• C alters cryptographic keys, and notifies CA before applying the new keys;

C generates CertReq again, and it keeps the same as the old one.
• C alters cryptographic keys, and notifies CA before applying the new keys;

C generates CertReq again, but it does not keep the same as the old one.
• C alters cryptographic keys, but does not notify CA before applying the

new keys; C generates CertReq again, and it keeps the same as the old
one.

• C alters cryptographic keys, but does not notify CA before applying the
new keys; C generates CertReq again, but it does not stay the same as the
old one.

The first and second cases assume the principal has memory to message. In
contrast, we assume that the principal has no memory to message in the re-
maining items. In the first instance, if C alters the cryptographic key, Spv(C ),
Spb(C ), k2, k3, and notifies CA before applying the new key, CA can make
the older key invalid and stop using them. Meanwhile, because the principal
has memory to message, we still believe that the result remains true after a
series of new actions using the (R-I-1) to verify the process. However, if C
does not allow CA to know the new key, the former result cannot be authen-
ticated, even though the principal has memory to message. This may damage
the security of transactions. For the other items, verification can be developed
according to the corresponding accumulation rules. The procedure for verifi-
cation should be the same as in the first instance. Detailed verification will
be showed in our future work. Therefore, only the second instance is used to
illustrate the usefulness of classified accumulation rules.

P = {Know(C, Kpb(CA)), Know(C, AcctInf )},
α = Generate(C, <Spv(C ), Spb(C )>) o Generate(C, CertReq) o

Generate(C, k2) o Generate(C, k3) o α1 o α2

Q = {Auth(CA, C, m)}
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Proof:
(1) Know(C, Spb(CA)) [2-2]
(2) Generate(C, <Spv(C ), Spb(C )>) [action]
(3) Know(C, <Spv(C ), Spb(C )>) (2)[R-2]
(4) Generate(C, CertReq) (3)[2-4][action]
(5) Know(C, CertReq) (4)[R-2]
(6) Generate(C, <k2, k3>) [action]
(7) Know(C, <k2, k3>) (6)[R-2]
(8) Know(C, <CertReq, k2, Spb(C )>) (3)(5)(7)[6-1]
(9) Know(C, H (m)) (8)[4-1]
(10) Know(C, S (H (m), Spv(C ))) (3)(9)[6-1]
(11) Know(C, e(<m, S (H (m), Spv(C ))>, k3)) (7)(8)(10)[6-1][1-1]
(12) Know(C, AcctInf ) [premise]
(13) Know(C, E (<k3, AcctInf>, Kpb(CA))) (7)(12)[6-1][2-1]
(14) Send(C, CA, e(<m, S (H (m), Spv(C ))>, k3)) [action]
(15) Send(C, CA, E (<k3, AcctInf>, Kpb(CA))) [action]
(16) Know(CA, e(<m, S (H (m), Spv(C ))>, k3)) (14)[R-1]
(17) Know(CA, E (<k3, AcctInf>, Kpb(CA))) (15)[R-1]
(18) Know(CA, m) (30)(17)[2-3][3-2][3-1]
(19) Know(CA, S (H (m), Spv(C ))) (16)(17)[2-3][3-2][3-1]
(20) ⇁Auth(CA, C, m)

The step (20) implies two possibilities: one is that the message m does not in-
clude a timestamp and identifier, thus CA cannot authenticate C on message
m due to Theorem 3.1 and R-5; the other is that cardholder C generates new
cryptographic keys and does not notify CA, thus we can conclude CA cannot
authenticate C on message m for (R-I-4), even though CA weakly authenti-
cates C on message m in the first case. The second case cannot be carried
out by the NDL. Thereby, the ENDL greatly strengthens the verification and
should be a beneficial supplement to the NDL.

Comparing with other logics, ENDL is more compatible with existing se-
curity protocols due to the dynamic and non-monotonic properties. Also, the
strict authentication framework of ENDL helps us detect some subtle flaws
that might be easily ignored in other logics. With these three instances, we
can demonstrate that the ENDL is effective for verifying security protocols.
Example 3.1, derived from Needham and Schroeder’s protocols for public key
systems, is regarded as secure. Although author uses double handshake to
assure the information remains secret during the communication, we have
proved it has a flaw. Example 3.2 is drawn from SET protocol that is com-
monly thought to be a standard for future e-commerce. In our method, we
detect a subtle flaw there. The problems are not serious since it is not easy
for an intruder to turn the content of the certificate. However, this certainly
represents an attack since it leads to an intruder holding an incorrect belief:
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CA believes that it is C who thought C was talking to CA. Example 3.3 also
comes from the Cardholder Registration of the SET protocol. By validating
the certificate request of C in the new accumulation rules, a new subtle flaw
has been detected. This may be neglected in the NDL, although it is a po-
tential threat to the security of SET. To our knowledge, it is the first time to
uncover these flaws in cardholder registration.

3.6 Summary

E-commerce has played a very important role in global economic growth today.
At the same time, however, its evolution has resulted in the increase of both
the vulnerability of e-commerce systems to security violations and the damage
that such violations may cause.

A number of secure transaction protocols have been developed to ensure
secure transactions. However, these secure protocols may be subject to diverse
malicious attacks. Regardless of much efforts on improving the protocols, there
are still subtle flaws found from insecure protocols. A variety of formal meth-
ods have been developed to analyse secure protocols in e-commerce systems.
However, their abilities are still far from what we expected.

Traditional formal methods, such as BAN logic [22] and GNY logic [62],
have showed their limitations in analysing secure transaction protocols. Al-
though a number of formal approaches have been developed for formal analysis
of e-commerce protocols, they are either complicated to use or incapable of
being extended to other protocols.

In this chapter, ENDL is proposed for facilitating the verification of secure
transaction protocols. It is combined with dynamic and non-monotonic prop-
erties, and presents more challenges than existing logics used in the analysis
of secure transaction protocols.

In particular, the verification automatically halts in answer to any un-
successful authentication, and therefore we can detect the defects of secu-
rity protocols in advance. In addition, by using the notation of identifier and
timestamp that have proved to be efficient in helping the designer of protocol
to detect attacks, we can protect information against replays. The proposed
methodology satisfies the requirements of accumulation rules. To make it more
reasonable and applicable, the fundamental accumulation rule is classified fur-
ther to generate thirteen new rules in terms of corresponding circumstances.

The examples in Section 3.5.4 have shown that the ENDL is useful for
finding some well-known flaws in security protocols. Meanwhile, it also detects
some subtle flaws in the SET protocol, which was previously believed to be
secure [7]. Therefore, the framework ENDL can be a useful complement to
existing formal analysis of electronic transaction protocols.
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Model Checking in Security Protocol Analysis

Theorem proving and model checking are two main approaches used for the
formal analysis of security protocols. As described in Chapter 1, theorem prov-
ing focused on the verification of authentication protocols and cryptography
protocols. Although Heintze [68] firstly used model checking to analyse elec-
tronic transaction protocols, the efforts used for model checking of electronic
transaction protocols are underdeveloped due to increasing complexity and
varied types of application of the protocols.

Model checking is a technique for verifying finite state concurrent systems
such as hardware design and communication protocols. Specifications of the
systems are represented as temporal logical formulae, and efficient symbolic
algorithms are applied to convert the model defined by the systems and check
if the specification holds or not. In contrast to traditional approaches that are
based on simulation, testing and deductive reasoning, model checking is auto-
matic and usually fast. On the other hand, if an error is found, model checking
is able to produce a counterexample that shows the source of the error.

There have been a number of model checking methods developed for the
analysis of e-commerce protocols. Ray [75] shows how model checking can
be used to obtain an assurance about the existence of the properties in an e-
commerce protocol such as money atomicity and validated receipt. The model
checker can be used to evaluate what failures cause the violation of one or
more of the properties. In [157], algorithms and rules are developed to trans-
late visually modelled e-commerce protocols into formal models that are then
verified using an extended UML formalism. This approach is applied to the
design of an e-commerce protocol NetBill. An extended fair-exchange stan-
dard is described in [12], which includes atomicity assurance and uses model
checking to verify the correctness of the implementation of e-commerce proto-
cols. A main challenge in model checking is dealing with the state exploration
problem. To alleviate this problem, a parallel model checker [78] is proposed
to analyse a security protocol that was developed to facilitate secure and fair
exchange. In particular, the model checking based on FDR is used to analyse
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the SET protocol and check whether five essential correctness properties are
satisfied [100].

In contrast to security protocols that involve secrecy and authentication,
the correctness conditions for electronic transaction protocols contain more
components. These conditions present interesting challenges for the tradi-
tional theorem proving. Furthermore, the number of principals and data are
unforseen. To address these problems, a verification model based on ENDL is
recently developed by us [28].

It is usually faster than theorem proving, and extensible because the funda-
mental security mechanisms of different security protocols remain unchanged.
For brevity, some abstractions are employed, such as the low-level details of
the underlying cryptographic mechanisms. Thus, we could turn our sight on
the verification of security properties we expected to hold. Several examples
are validated by using this model. From the observation, the verification model
is a useful complement to the traditional theorem proving in verifying security
protocols.

In Section 4.1, it outlines the current model checking approaches. Sec-
tion 4.2 describes the components and design of the verification model. Several
instances are then validated by using this model. In Section 4.3, it compares
the verification model to theorem proving. We discuss the other model check-
ers that can be used to analyse security protocols in Section 4.4. Section 4.5
gives a summary to this chapter.

4.1 An Overview of Model Checking in Analysing
E-Commerce Protocols

Model checking is techniques that formally specify the system as logical for-
mulae, and efficient symbolic algorithms are used to traverse the model defined
by the system and check whether the specification holds or not. Extremely
large state-spaces can often be traversed in a short time. In contrast to the
traditional theorem proving, model checking is automatic and usually fast.

Usually, the users want to ask the following questions when checking their
design requirements:

• Do they match the user’s needs or reflect the user’s requirements?
• Are the requirements clear and readable?
• Are the requirements flexible or realizable for design and development?
• Are the requirements written in an abstract way, so as to leave sufficient

freedom to the designers and developers to implement them?

Regardless of some helps from modelling tools such as UML, the main process
has to be completed manually. To improve the quality of the requirements,
it is critical and fundamental to use an unambiguous and rigorous formal
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language for describing the requirements. A model checking tool accepts sys-
tem requirements (called models) and a system property (called specification)
that the system is excepted to satisfy. It answers yes if the model satisfies
given specifications and generates a counterexample otherwise. By studying
the counterexample, we can identify the error in the model and correct the
model. The sufficiently satisfied system properties can increase the confidence
in the correctness of the model.

Model checking has been successfully used in hardware validation [69, 108].
Also, model checking has recently attracted the attention of the software de-
signer [152, 158]. In security domain, a number of works have been done.
Lowe [98] used FDR to debug and validate the correctness of Needham-
Schroeder protocol and Heintze [68] used FDR to verify the electronic trans-
action protocols, including NetBill and a simplified digital cash protocol. Pro-
tocol verification aims at proving that protocols meet their specifications, i.e.,
that the actual protocol behaviour coincides with the desired one. On the
other hand, if the logic formulae cannot be proved within the finite state,
some feasible suggestions will be generated and sent to the user. However, as
to our knowledge, not much work has been found to analyse electronic trans-
action protocols using model checking due to their complexity. They may
use different formal languages to model various protocols. Thus, it is usually
infeasible to transfer an approaches to analyse a variety of protocols.

4.1.1 Model Checking for Failure Analysis of Protocols

The wide application of the world wide web has resulted in the popularity
of e-commerce. Many e-commerce protocols have been proposed to ensure
secure transactions without unauthorized disclosure and modification. A few
desirable properties of protocols, such as money atomicity and goods atom-
icity, and validated receipt have been identified by researchers. However, it is
a key issue to verify whether a given protocol satisfies these properties in the
presentence of site and/or communication failures.

An e-commerce protocol proposed by Ray [76] is designed for electronic
transactions including digital products. Let C, M and TP be a customer, a
merchant and a trusted third party. The protocol can be formally described
below in an abstract way.

1. TP → C : download of product encrypted with key K 1

2. C → M : purchase order
3. M → C : product encrypted with a second key K 2

4. M → TP : the decrypting key K for the product and the approved pur-
chase order

5. C → TP : the payment token and a copy of the purchase order
6. TP → C : the decrypting key
7. TP → M : payment token
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Actually, the messages exchanged are signed, encrypted and sent along with a
cryptographic checksum, whereas the cryptographic aspects of the protocols
are abstracted away when modelling the protocol.

In this approach, Failure Divergence Refinement (FDR) model checker is
applied. The analysed protocol is represented as a communicating sequential
process (CSP), called system. The property that we want to check is expressed
as another CSP process, called SPEC. If the set of behaviours generated by
SYSTEM is a subset of those generated by SPEC, we can say that the protocol
satisfies the property.

Modelling the communication between the processes. A sender
sends messages over a unique channel (the sender’s out channel for a particular
receiver) while the receiver receives the message over another channel (the
receiver’s in channel). For each pair of channel, a process is needed to read data
from the out channel and write the data into the in channel. For example, four
channels including minc, coutm, cinm and moutc, and two processes including
COMMmc and COMMcm are involved to model the communication between
the merchant and the customer.

Modelling the customer, merchant and the trusted third party
processes. Initially, the customer waits for an encrypted product from the
trusted third party.

CUSTOMER = cint ?x → DOWNLOADED EGOODS(x )

where cint represents a communication channel between customer and the
third party.

A purchase order is sent to M once C has downloaded the product, which
is modelled as:

DOWNLOADED EGOODS(x ) = coutm !po → PO SENT(x )

where po represents the purchase order, which is the set of all data commu-
nicated from the customer to the merchant directly .

The next step involves checking the encrypted product sent by the mer-
chant and comparing the encrypted product from the merchant and those from
the third party. A payment token will be sent to the third party when the
customer is satisfied with the encrypted product. After sending the payment,
the third party sends the customer the key or an abort message.

Modelling the merchant process. On the merchant side, the merchant
waits to receive a purchase order from the customer.

MERCHANT = minc ?x → if (x PO SENT(x ))

In response to the purchase order, the merchant sends an encrypted product to
the customer and the decryption key to the trusted third party. The merchant
then waits to receive the payment token from TP.
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Modelling the trusted third party. The trusted third party sends the
encrypted product to the customer and waits to receive the payment token
from the customer and the key from the merchant. This is modelled as:

TP = toutc !encryptedGoods1 → WAIT TOKEN KEY

After receiving both the key and payment token and validating their correct-
ness, TP proceeds the sending out the key to the customer and the token to
the merchant.

In addition to the modelling of participants, some desirable properties in-
cluding money atomicity, goods atomicity and validated receipt are modelled.
For example, the money atomicity is satisfied when (i) the customer sends the
token and the merchant receives it or (ii) the customer sends the token and
receives a transaction abort message. This is modelled as:

SPEC1 = STOP | ∼ | ((coutt.paymentToken → mint.paymentToken
→ STOP)
[] (coutt.paymentToken → cint.transAborted → STOP))

In the similar way, the good atomicity and the validated receipt property can
be modelled.

The model checker aims to detect the failures that do not preserve the de-
sirable properties of money atomicity, goods atomicity, and validated receipt.
The data may get lost in an unreliable communication channel. The customer,
merchant and third trusted party should be able to abort at certain points
in the protocol without violating the properties. A protocol failure analysis is
conducted to see why the protocol is failure resilient. According to the anal-
ysis, the authors proposed a mechanism that preserves the properties even in
the event of sites or communication failures.

Another similar work can be seen in [12]. It delineates an extended fair-
exchange standard and represents how a model checker using FDR can fa-
cilitate verification of a standard’s atomicity requirement. In particular, the
verification prevents the failure of protocols when unforeseen circumstances
occur.

4.1.2 Automatic Analysis of E-commerce Protocols Using UML

The Unified Modeling Language (UML) has been widely applied in supporting
object-oriented software development. In recent years, many researchers have
extended UML for design and development of e-commerce protocols. However,
the existing formalisms are insufficient to satisfy the requirement of developing
e-commerce protocols. A novel model checking technique that integrates the
refined AUML [157] protocol diagrams is introduced to exploit the automated
analysis of e-commerce protocols.
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AUML is a subset of an agent-based extension to the standard UML for
the specification of agent interaction protocols (AIP). The particular exten-
sion includes lifeline and messaging. Furthermore, a process for e-commerce
protocols is developed. The modelling of e-commerce protocols using refined
protocol diagrams consist of the following steps:

Refinement of AUML protocol diagrams. The absence of definite
semantics of UML makes it ambiguous and therefore difficult to be interpreted
mechanically. The Refined Protocol Diagram (RPD), is going to meet the
requirements for e-commerce protocols design and also satisfy our tastes for
visual modelling. The refinements about messages passing are listed below:

• Message broadcast corresponds to the message passing with constrain {1
· · · n}, which represents that the message is sent n times simultaneously.

• Message triggering implies that some internal events trigger the message
sending.

• Message synchronization has the similar blocked semantics with single
message receiving. The difference is merely that some messages arrival has
to wait for.

• Constraint “silent” represents that message sending or receiving have no
effect on the current state of role.

• Message causality is introduced to causally relate two messages on the
same lifeline.

Textual notations for the refined AUML protocol diagram. Formal
analysis of protocols always require a form of description that is tractable
by algorithms. A textual version of the refined protocol diagrams is defined.
In refined protocol diagrams, each role is mapped to a pattern of interaction
behaviour, which includes interaction elements and operators. The syntax of
interaction behaviour of one role is defined as:

Beh :: = Ele | Behi → Behj | Beh1 + · · · + Behk | Beh1 ⊕ · · · ⊕ Behk

where “→” indicates sequential concatenation operator, “+” inclusive-or op-
erator and “⊕” exclusive-or operator.

Basic interaction element is a four tuples Ele = (PointType, Source, Tar-
get, ECADef). Source and Target identify message sender and message re-
ceiver; ECADef represents [msgE, Condition, msgA], where msgE and msgA
are message names and Condition is Boolean expression.

Modelling e-commerce protocols. The refinement of AUML PD can
be used to analyse NetBill protocol. This can be helpful to improve the design
of more complex e-commerce protocols. The simplified NetBill protocol is
described below.

1. C → M : goods request (GR)
2. M → C : encrypted goods with a key K (EG)
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3. C → M : signed electronic Payment Order (EPO)
4. M → B : endorsed EPO (EEPO) including key K
5. B → M : payment slip (PS) or no payment (NP)
6. M → C : PS(inc1uding key K ) or NP. If C does not get the receipt for

some time, C may inquire B
7. C → B : transaction enquiry (TE)
8. B → C : transaction results, PS, NP or no record (NR)

Three participants are involved in the protocol, one consumer, one merchant
and one trusted bank. By using the extensions for lifeline and messaging,
NetBill can be simplified by RPD. For example, on the lifeline of participants,
in-message EEPO and out-message EPO are causally linked; the triggered
messaging shows that some internal events cause message passing.

4.2 An ENDL-Based Verification Model

Usually, the modelling of electronic transaction protocols requires distinct
specification to transactions. However, the specification of protocols are not
always consistent as people expected. This happens very often in the compli-
cated electronic transaction protocols. Thereby, the inconsistent contexts will
be considered to be insecure here.

4.2.1 Components

According to different functions, the verification model can be divided into
four fundamental modules.

– Inference engine,
– Knowledge base,
– User interface,
– Facts database.

The knowledge base comprises the knowledge that is specific to the domain
of application, including such things as facts about this domain, rules that
describe the relations or phenomena in the domain. The inference rules inside
the knowledge base imply the fundamental security mechanisms of transaction
protocols, which should be kept steady.

Example 4.1. Examples of known facts and rules include Alice knows Tom’s
public signature key, know(Alice, Spb(Tom)); and if Alice knows communica-
tion key k and e(m, k), she should know the plain text of message m.

The inference engine is the core of the whole inference framework. It knows
how to actively use the knowledge in the knowledge base. This verification
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model uses the embedded inference engine of Prolog. For simplicity, the dis-
cussion of inference engine is removed here. In general, a user interface is
necessary to provide communication between users and systems. It is conve-
nient to view the inference engine and interface as one module, usually called a
shell. In addition to the known facts, some real-time facts have to be collected
by the user interface, and then stored into the facts database.

Example 4.2. Example of real-time facts includes Alice knows the book order
sent from Bob, know(Alice, book order(Bob)).

From the above description, each of them actually performs as one of the
independent function modules of the verification model.

The aforementioned scheme separates knowledge from algorithms that op-
erate on the knowledge. It enables a rational way of developing a verification
model for several applications by developing a shell that can be used univer-
sally, and then adding some new knowledge for each application. Nevertheless,
even if modifications of the knowledge base from one security protocol to an-
other are necessary, the basic security principles should keep the same as
before at least. Thus, it is convenient to apply this model to validate various
security protocols.

4.2.2 Designing the Model

As mentioned above, there are usually some known facts about encryption
keys, messages and some real-time facts. In particular, the known facts are
stored in the knowledge base along with the inference rules. However, the
real-time facts have to be derived from the interaction between users and
verification systems via the user interface.

In general, the language of if-then rules is adopted for representing knowl-
edge. Each rule actually consists of two parts, condition and conclusion. It is
possible that the conditions of a rule is the conclusion of other rules.

Example 4.3. Rule 1, if Alice knows communication key k and encrypted mes-
sage e(m, k) then she should know the plain text of m; rule 2, if Alice knows
message m, she should know the signed message S (m, Spv(Alice)). The con-
clusion of rule 1 is actually the condition of rule 2.

Thus, the knowledge base can be shown in Figure 4.1 as an inference net-
work. Nodes A, B, C, D, E, F, G, and H in the network correspond to
propositions and links correspond to rules in the knowledge base. E and G
are the conclusion of rule 2 and rule 3 respectively. However, they are acted
as the conditions in rule 4. Therefore, the inference system will firstly search
the conclusion from the facts database during the verification execution. If
it finds the matched facts in the database, the verification process will skip
this rule and turn to check the next inference rule for matching the other
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conditions; if not, it has to match the conditions of this rule one by one. Arcs
that connect some of the links indicate the conjunctive connection between
the corresponding propositions. The network representation of Figure 4.1 is
in fact an AND/OR graph.

B 

C 

D 

E 

G 

H 

rule 1 

rule 2 

rule 3 

rule 4 

A 

F 

Fig. 4.1. Mode of inference network

Once knowledge is represented in some form, we need a reasoning procedure
to draw conclusions from the knowledge base. For if-then rules, there are two
basic ways of reasoning [20]:

– backward chaining, and
– forward chaining.

Backwards chaining starts with a hypothesis and works backwards, according
to the rules in the knowledge base, toward easily confirmed findings. However,
the forward chaining is in the opposite direction. In our verification model,
the back chaining is chosen as the reasoning way, which searches from the
goal we want to verify to data. Thus, the user needs to submit an authenti-
cation command as a goal, and then the verification system will try to search
the facts database and knowledge base to prove the goal. If the verification
achieves the goal, the authentication succeeds. In contrast, if the goal cannot
be proved, based on existing knowledge, it is natural for us to conclude that
the authentication fails due to the non-monotonic and fail-negate properties
of ENDL.

This verification model provides four different ways to handle the infor-
mation:

• Adopt the external file as the storage of the knowledge base;
• Collect the facts and knowledge via the interaction with user;
• Access the knowledge base;
• Output the results.
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The procedures of verification are depicted in Figure 4.2. The verification
starts when a user submits an authentication request to the authentication
server. As stated above, some known facts should be collected previously and
stored into the knowledge base together with the inference rules. Also, the
user needs to input the real-time facts and store them into the facts database.
In answer to the authentication request, the authentication server will search
the knowledge base in terms of the inference network in Figure 4.1. Suppose
the knowledge base includes n inference rules like the set R below:

Knowledge 

Base 

Database

User 

Interface

START 

YES YES 

NO 

YES 

STOP 

NO 

Check next rule 

Other rule?

Explanation 

Store the result 

NO 

Conclusion in  

Database? 

Satisfy all  

conditions?

NO 

Fig. 4.2. The algorithm flow of inference engine

R = {rule1, rule2, . . . ,rulen}
where the rules in knowledge base are of the form:

rulei = {(N, [Conditionij ], Conclusioni)| 1≤i≤n, 1≤j}
where Conditionij is a set of simple assertions using logic operators and and
or, Conclusioni is a simple assertion that does not contain logic operator,
and N is the rule name. The assertions in rules can be terms that contain
variables.

If all rules of R have been searched thoroughly, the authentication will be
halted promptly. If a rule rulei is found, the system will go ahead to check
whether the Conclusioni of this rule has been stored in the facts database. If
the Conclusioni is found, the verification system will skip it and go to next
rule; if it cannot be found, the system has to match the Conditionij of rulei one
by one. If and only if all the conditions are satisfied, a truth value ‘true’ will be
returned, and the authentication server will generate a response and store the
results into the database; otherwise we have to check next inference rule until
all of them are searched out. To match the Conditionij , it can be derived from
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the fact database or deduced from other inference rules. A response message
is then sent to the requester, which is used to decide whether the validated
message is secure or not.

To access the knowledge base and fact database, it is necessary to estab-
lish an interface between users and systems. This assists in conducting fact
collection and query. The details are described below.

4.2.3 Handling the Knowledge and Facts

Two ways can be used to handle the knowledge base of the verification model.
One is to input new knowledge, and the other is to read information from the
existing knowledge base. They can be denoted by ‘a’ and ‘b’ respectively.

process (‘a’) if acquisition.
process(‘b’) if write (‘Name of the knowledge base’),
readln (Name),
consult(Name).

As described above, some known facts are public knowledge. For example,
Alice knows her own private key. Obviously, they will remain true in any
security protocols.

Except for the known facts, there are also some real-time facts derived us-
ing the interaction with users. Thereby, a predefined functor facts reading is
needed to collect the real-time facts. It is triggered promptly once the verifica-
tion server receives the authentication request from the remote client. Every
time, when the user inputs facts, the system will ask users whether it is a
terminal symbol “yes”. If so, the processing of facts collection is halted, oth-
erwise the user will keep on inputting other facts. Facts reading is in fact a
human-interaction facility, in which the user can collect the facts through an-
swering ‘who’ and ’what’ questions. For freshness, some facts are temporarily
stored into the dynamic buffer of system and will be void automatically once
the reasoning ends.

Example 4.4. “Alice knows Bob’s public signature key” is a collected fact, in
which Alice corresponds to the ‘who’ question and Bob’s public signature key
Spb(Bob) denotes ’what’ question.

In addition, it is very often that the verification system may ask the same
question inquired in the last rule to the subgoal of another rule. To avoid
repeated questions, the enquired question should be saved in the working
storage of system. A built-in procedure assertz is used to achieve this goal,
which can help the system to memorize the asked question.

The facts database is created to save the input facts. Among them, each
fact is separated into several fields according to the concrete instances, and is
stored into the database. Facts in the database are of the format:
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Facts = {(Namei, Messagei) | 0≤i}
During the authentication, it is convenient to search the facts from the facts
database by executing SQL query. Also, the verification system can execute
the INSERT, UPDATE, and DELETE operations on facts. This provides
a flexible way for the communications among the inference engine, knowledge
base, and facts database.

If a user wants to update the knowledge base, he/she can use another
built-in procedure asserta() to store the new rules into the knowledge base.
However, this operation should just be accessed by authorized users under the
consideration of security. Thus, the user has to gain the authorization before
he starts the process.

4.2.4 Recognition

This section presents how the verification model is used to validate several
instances of security protocols, in which the last three instances have been
verified in Chapter 3 by using theorem proving. For simplicity, the verification
below stresses on rules handling and facts reading.

Example 4.5. Merchant certificate request in SET.

This example is intercepted from the merchant registration in SET. Auth(CA,
M, CertReq) is the proposition that we want to verify. Know(CA, <Kpv(CA),
Kpb(CA)>), Know(M, Spb(M )), and Know(CA, <Spv(CA), Spb(CA)>) are
some known facts, which should have been stored into the knowledge base be-
fore the verification starts. The real-time facts, such as Know(CA, Spb(M)),
will be input by using the facts reading functor. In addition, the messages,
E (<CertReq, S (H (CertReq), Spv(M ))>, k1) and S (<k1, AcctData(M )>,
Kpb(CA)) etc. sent from M to CA are generated via the user’s input. The
knowledge is transferred into rules with rule’s name, and then stored into the
knowledge base. The serial number is used to denote the rule name for brevity.

rule(1, [“Know(CA, S (<k1, AcctData(M )>, Kpb(CA)))”, “Know(CA,
Kpv(CA))”, “Know(CA, k1)” ], “Know(CA, AcctData(M ))”)
rule(2, [“Know(CA, E (<CertReq, S (H (CertReq), Spv(M ))>, k1))”,
“Know(CA, k1)”], “Know(CA, <CertReq, S (H (CertReq), Spv(M ))>)”)
rule(3, [“Know(CA, <CertReq, S (H (CertReq), Spv(M ))>)”], <

“Know(CA, CertReq)”, “Know(CA, S (H (CertReq), Spv(M )))”>)
rule(4, [“Know(CA, CertReq)”, “Know(CA, S (<IDM , T, H (CertReq)>,
Spv(M )))”, “Know(CA, |Clock−T | < �t1 + �t2)”], “Auth(CA, M,
CertReq)”)

where Clock is the local time, �t1 is an interval representing the normal dis-
crepancy between the server’s clock and the local clock, and �t2 is an interval
representing the expected network delay time [40]. Each rule is separated into
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conditions and a conclusion by the square bracket. The rules presented above
are assigned with the instance variables, but they are in fact replaced with
variables when stored into the knowledge base.

The user then needs to input the real-time facts. They are listed in Ta-
ble 4.1 with the Name and Message fields. Each row of the table denotes who
(Name) knows message (Message).

Table 4.1. Merchant Certificate Request.

Principal’s name Message

M k1

M Kpb(CA)
M CertReq
CA Spb(M )

After establishing the knowledge base and completing the collection of real-
time facts, the user can submit an authentication request:

?- Auth(CA, M, CertReq).

The verification system then searchs the knowledge base for the matched rules.
However, the system cannot authenticate Auth(CA, M, CertReq) since the
merchant did not add the timestamp and identifier in the message [29]. Finally,
the verification result is replied to the user. Also, some feasible suggestions
will be generated as a reference for future transactions.

Example 4.6. Purchase response in SET.

This example is a process of purchase request. Auth(C, M, PRes) is the propo-
sition that needs to be verified. Firstly, the system collects the facts Know(C,
PRes) and Know(C, Spb(M )) by interacting with user. In addition, some
known facts, such as Know(M, <Spb(M ), Spv(M )>), should have been stored
in the knowledge base. The fact collection will be conducted until the user
inputs a terminal symbol “yes”. Four inference rules are used in the verifica-
tion:

rule (1, [“Know(M, PRes)”], “Know(M, H (PRes))”)
rule (2, [“Know(M, PRes)”, “Know(M, Spv(M ))”], “Know(M, S (PRes,
Spv(M )))”)
rule (3, [“Know(M, PRes)”, “Know(M,Spv(M ))”], “Know(M, S (H (PRes),
Spv(M )))”)
rule (4, [“Know(C, PRes)”, “Know(C, Spb(M ))”, “Know(C, S (<IDM , T,
H (PRes)>, Spv(M )))”, “|Clock -T | < �t1+�t2”], “Auth(C, M, PRes)”)
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where the fourth rule has been defined in the last example. And thereby, it is
unnecessary to generate this rule again.

Table 4.2 describes the storage form of facts, in which the columns of name
and message are used to store user name and message, respectively.

The user then submits an authentication command to the authentication
server:

?- Auth(C, M, PRes).

Table 4.2. Purchase Response in SET.

Principal’s name Message

M PRes
M IDM

C Spb(M)

To match the conditions of a rule, one way is to search the current fact
database, and the other is to ask users via the user interface. By doing so,
the system fails to authenticate the PRes sent by the cardholder. The system
stops the authentication and sends a response message to user. At the same
time, the system needs to retract the outdated messages, such as outdated
facts, encryption keys and transaction ID.

Example 4.7. Distribution of communication keys in Needham and
Schroeder’s protocol.

This instance is the distribution of communication keys in Needham and
Schroeder’s protocol. It assumes that the authentication server (AS ) is re-
sponsible for generating and distributing all communication keys, and each
user has registered a private(secret) key with the AS.

The key distribution protocol is briefly described below. For a user A to
obtain a key CK to share with other user B, three steps are taken:

(1) A → AS : A, B, IDA

(2) AS → A: {IA, B, CK, Y}KA

(3) A → B : e(<CK, A>, KB)

where KA is only known to A and AS. After the step (3), A can ensure that
CK is safe to use. Then, a handshake between B and A follows:

(4) B → A: {IDB}CK

(5) A → B : {f(IDB)}CK
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Table 4.3. Distribution of Communication Keys in Needham’s protocol.

Principal’s name Message

A <A, B>
A IDA

A kA

AS CK
AS kA

AS <A, B>
AS kB

B kB

B IDB

In [40], a replay attack has been reported in this protocol. Here it is validated
using the proposed verification model in this chapter. Let m = e(<CK, A>,
KB)

Auth(A, AS, CK ) is the goal needs to be validated. Know(A, KA),
Know(AS, KA), Know(B, KB) and Know(A, KB) are known facts and have
been stored in the knowledge base. The real-time facts include <A, B, IDA>

sent from A to AS, message e(<IDA, B, CK, m>, KA) sent from AS to A,
and message m sent from A to B. For brevity, the messages transmitted in
the last two steps are not included. Table 4.3 describes some real-time facts.

The inference rules used to handle the facts are listed below:

• rule (1, [“Generate(A, <A, B, IDA>)”], “Know(A, <A, B, IDA>)”)
• rule (2, [“Send(A, AS, <A, B, IDA>)”], “Know(AS, <A, B, IDA>)”)
• rule (1

′
, [“Generate(AS, <IDA, B, CK, m>)”], “Know(AS, <IDA, B, CK,

m>)”)
• rule (2

′
, [“Send(AS, A, <IDA, B, CK, m>)”], “Know(A, <IDA, B, CK,

m>)”)
• rule (3, [“Know(AS, kA)”, “Know(AS, <IDA, B, CK, m>)”], “Know(AS,

e(<IDA, B, CK, m>, kA))”)
• rule (3

′
, [“Know(A, kB)”, “Know(A, <CK, A>)”], “Know(A, m)”)

• rule (2
′′
, [“Send(A, B, m)”], “Know(B, m)”)

• rule (4, [“Know(A, kA)”, “Know(A, e(<B, CK, T, m>, kA))”, “|Clock -T |
< �t1+�t2”], “Auth(A, AS, CK )”)

• rule (4
′
, [“Know(B, kB)”, “Know(B, e(<A, CK, T>, kB))”, “|Clock -T |

< �t1+�t2”], “Auth(B, A, CK )”)

The rule (1) and (1
′
), rule (2), (2

′
) and (2

′′
), rule (3), (3

′
), and rule (4) and

(4
′
) are actually regarded as four rules in knowledge bases. Among them, rule

(4) is generated in light of the proved result in [40]. The variables of rules will
be initiated with instance variables during validation.
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The user then sends two authentication commands to the authentication
server:

?- Auth(A, AS, CK ).
?- Auth(B, A, CK ).

The system fails to validate CK for the same reason mentioned in [40]. The
system then responds an error message to the user.

Example 4.8. Distribution of Public keys in Needham and Schroeder’s
protocol.

In this example, A intends to attain B ’s public key by consulting with the
authentication server AS. In addition, the B ’s public key must be verified to
guarantee its validity. Here the authentication server (AS ) is responsible for
storing and distributing users’ public keys.

Table 4.4. Distribution of Communication Keys in Needham’s protocol.

Principal’s name Message

A <A, B>
AS <A, B>
AS CK
A IDA

B IDB

To validate the goal Auth(A, AS, Spb(B)), the verification system may usu-
ally handle known facts, real-time facts and inference rules. The known facts
consist of Know(A, Spb(AS )), Know(A, Spb(B)), Know(B, Spb(A)) and
Know(AS, Spv(AS )), which have been stored in the knowledge base pre-
viously. In addition, the real-time facts include <A, B> generated by A and
known by AS, CK = <B, Spb(B)>(communication key) known by AS, IDA

known by A and IDB known by B. All the real-time facts will be stored as
the form in Table 4.4.

To transmit messages between A, B and AS safely, the transmission usu-
ally conforms to the inference rules to implement encryption, signature, de-
cryption, and authentication. For convenience, the variables of inference rules
are assigned instance variables.

rule (1, [“Generate(A, <A, B>)”], “Know(A, <A, B>)”)
rule (2, [“Send(A, AS, <A, B>)”], “Know(AS, <A, B>)”)
rule (3, [“Know(AS, CK )”, “Know(AS, Spv(AS ))”], “Know(AS, S (CK,
Spv(AS )))”)
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rule (1
′
, [“Generate(AS, S (CK,Spv(AS )))”], “Know(AS, S (CK,

Spv(AS )))”)
rule (2

′
, [“Send(AS, A, S (CK, Spv(AS )))”], “Know(A, S (CK, Spv(AS )))”)

rule (4, [“Know(A, Spb(AS ))”, “Know(A, S (<T, B, Spb(B)>,
Spv(AS )))”), “|Clock -T | < �t1+�t2”], “Auth(A, AS, Spb(B))”)

The verification begins when user sends an authentication command to the
authentication sever:

?- Auth(A, AS, Spb(B)).

The goal Auth(A, AS, Spb(B)) cannot be verified since the conditions in rule
4 are not satisfied. It actually obtains the same result as in Chapter 3 by using
theorem proving.

Example 4.9. Initial response in Cardholder Registration.

As described in Chapter 3, the cardholder C and certificate authority CA
have to authenticate the received messages. Auth(C, CA, InitRes), Auth(C,
CA, <Spv(CA), Spb(CA)>) and Auth(C, CA, <Kpv(CA), Kpb(CA)>) are
the goals that we want to validate.

Table 4.5. Initial response in Cardholder Registration.

Principal’s name Message

C RegFormReq
C PAN
C k
CA InitRes

The known facts in this instance are Kpb(CA), Spb(CA) known by C, and
CertS (CA), CertK (CA) and Spv(CA). In addition, it includes some real-time
facts during the transaction, including k, RegFormReq and PAN generated by
C, and InitRes generated by CA, which are depicted in Table 4.5.

The following rules are used to encrypt and decrypt the transmitted mes-
sages by C and CA.

rule (1, [“Generate(X, InitRes)”], “Know(X, InitRes)”)
rule (2, [“Send(X, Y, InitRes)”], “Know(Y, InitRes)”)
rule (3, [“Know(X, Spb(CA))”, “Know(X, S (Message, Spv(CA)))”],
“Know(X, Message)”)
rule (4, [“Know(X, InitRes)”], “Know(X, H (InitRes))”)
rule (5, [“Know(X, CertS (CA)”, “Verify(X, CertS (CA), CA)”], “Auth(X,
CA, <Spb(CA), Spv(CA)>)”)
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rule (6, [“Know(X, CertK (CA)”, “Verify(X, CertK (CA), CA)”], “Auth(X,
CA, <Kpb(CA), Kpv(CA)>)”)
rule (7, [“Know(X, Spb(CA))”, “Know(X, InitRes)”, “Know(X, S (<IDY ,
T, H (InitRes)>, Spv(CA)))”, “|Clock -T | < �t1+�t2”], “Auth(X, CA,
InitRes)”)

Among them, the seventh rule has been actually generated in Example 4.8.
The verification starts when the user sends a verification command to the

verification system.
?-Auth(C, CA, InitRes)
The system validates it by handling the facts and knowledge base in light

of the process in Figure 4.2. It fails to verify this goal since the InitRes is
suspected to be subject to replay attacks.

Example 4.10. Certificate request in Cardholder Registration.

This example is also a process of Cardholder Registration. It intends to vali-
date the certificate request message sent from CA to C.

It is unnecessary for the user to input the known facts, such as Know(C,
Spb(CA)) and Know(C, Spb(C )), since they have been stored previously.
Then, the main task is to gather the real-time facts, which include k2, k3,
CertReq and AcctInf generated by cardholder, and RegForm generated by
CA. They are stored as the form of Table 4.6.

Table 4.6. Certificate request in Cardholder Registration.

Principal’s name Message

C k2

C k3

C CertReq
C AcctInf
CA RegForm

The inference rules to verify this instance are listed below. Let m = <CertReq,
k2, Spb(C )>.

rule (1, [“Generate(C, <Spb(C ), Spv(C )>)”], “Know(C, <Spb(C ),
Spv(C )>)”)
rule (1

′
, [“Generate(C, CertReq)”], “Know(C, CertReq)”)

rule (1
′′
, [“Generate(C, <k2, k3>)”], “Know(C, <k2, k3>)”)

rule (2, [“Know(C, m)”], “Know(C, H (m))”)
rule (3, [“Know(C, H (m))”, “Know(C, Spv(C ))”], “Know(C, S (H (m),
Spv(C )))”)
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rule (4, [Know(C, <m, S (H (m), Spv(C ))>), “Know(C, k3)”], “Know(C,
e(<m, S (H (m), Spv(C ))>, k3))”)
rule (5 [Know(C, <k3,, AcctInf>), “Know(C, Kpb(CA))”], “Know(C,
E (<k3, AcctInf>, Kpb(CA)))”)
rule (6, [“Send(C, CA, e(<m, S (H (m), Spv(C ))>, k3))”], “Know(CA,
e(<m, S (H (m), Spv(C ))>, k3))”)
rule (6

′
, [“Send(C, CA, E (<k3, AcctInf>))”], “Know(CA, E (<k3, Acct-

Inf>, Kpb(CA)))”)
rule (7, [“Know(CA, E (<k3, AcctInf>))”, “Know(CA, Kpv(CA))”],
“Know(CA, k3)”)
rule (8, [“Know(CA, e(<m, S (H (m), Spv(C ))>, k3))”, “Know(CA, k3)”]
“Know(CA, S (H (m), Spv(C )))”)
rule (9, [“Know(CA, S (<IDC, T, H (m)>, Spv(C ))>)”, “Know(CA,
Spb(C ))”, “|Clock -T | < �t1+�t2”], “Auth(CA, C, m)”)

The verification fails to validate the validity of message m transmitted from
C to CA due to the same reason as the last example.

4.3 Comparison with Theorem Proving

This section presents a brief comparison between the verification model and
theorem proving, and highlights some features of verification model.

Speediness. The verification model usually brings on faster validation
than theorem proving. In general, the verification of protocols consists of three
steps:

– Collecting facts, including known facts and real-time facts;
– Submitting the authentication goal;
– Searching the matched rules.

Table 4.7. Speediness of Verification Model

Theorem Proving Verification Model

known facts not recorded recorded and automatically activated next time
real-time facts input manually input via user interface
rules matched manually searched automatically from knowledge base

It is very often that the theorem proving has to go through all the steps, which
are difficult to be implemented manually and time consuming. A user has to
collect some repeated facts again in next validation for they were not stored
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into knowledge base. Table 4.7 gives a simple contrast between verification
model and theorem proving from three aspects.

From the description in Table 4.7, the verification model avoids the re-
peated input owing to some common knowledge, and realizes the automatic
search of inference rules. And thereby, it is usually faster than theorem prov-
ing.

Extensibility. As mentioned before, ENDL (a theorem proving method)
is extensible, and has been used to formally analyse some examples of security
protocols. However, the extensibility of theorem proving is limited since the
extended rules cannot be recorded and used in validation next time. Their
differences are presented in Table 4.8 from two aspects.

Table 4.8. Extensibility of Verification Model

Theorem Proving Verification Model

real-time facts collected before verification input randomly
rules generated before verification added randomly

In Table 4.8, both the facts collection and rules generation can be randomly
implemented in verification model without the limitation of time like theorem
proving.

On the other hand, one can look back the Non-monotonic rule in chapter 3.
This rule is no longer able to describe the verification appropriately since the
action α can be altered randomly in the verification model. Let K, F and G be
knowledge base, the set of known facts and authentication goal respectively.
Based on the rule, we can define that the authentication fails if the verification
model cannot find the matched rules after searching the knowledge base and
facts thoroughly. The verification is formalized as follows:

Theorem 4.1. Let X, Y be the message sender and receiver respectively. Let
S0 be a set of knowledge. Suppose S = K ∪ F. The authentication then can be
defined as a formula:

Auth(X,Y,G) =
{

True if ∃S0 ⊆ S, S0 �= φ, then S0⇒G
False otherwise

This result is another answer to the non-monotonic rule. The verification is
possible, in a sense, to go continuously from one rule to the other until all
rules have been exhausted.
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4.4 Discussion

There have been many other model checkers to protocol verification. Some
specification verification tools are powerful but usually less flexible. Thus,
it is not easy to definitely determine which one is more appropriate than the
others. It depends on the user’s objectives and the complexity of the protocols.
In the followings, we present several verification tools that have been widely
used for protocol analysis.

To verify security protocols in a systematic way, significant efforts have
been conducted to develop formal analysis of cryptographic protocols, and
many good models have been proposed. Generally speaking, these methods
can be broadly classified into two categories, namely state based methods and
rule based methods.

The former methods model security protocols using finite state machines.
They search the state space exhaustively to see whether all the reachable
states are safe [129]. If some reachable state in a security protocol is proved to
be unsafe, a flaw may be identified; otherwise, the protocol will be reported
correct and safe. In contrast to rule based methods, they are usually complete
and can identify most flaws in protocols.

Unlike state based methods, the latter formally expresses what principals
can infer from the messages received [129]. The protocols, the needed assump-
tions and the goals of the protocols are formalized in traditional formal logic.
Furthermore, some specific properties of the protocols can be proved by using
the axioms and rules of the logic. Rule based methods are not subject to large
state space, and can normally run quickly.

To gain effectiveness from state based methods and efficiency from rule
based methods, a new security protocol verification method, which is based
on a knowledge-based framework and implemented in a mechanical reasoning
platform, Isabelle is proposed in [101]. The method analyses the knowledge of
participating principals and infers what they can know and can never know.
It takes protocols concerning multiple interleaving sessions into consideration
and can find flaws which are often overlooked by many rule based methods.

Isabelle is a popular generic theorem prover developed at Cambridge Uni-
versity (Larry Paulson) and TU Munich (Tobias Nipkow). Isabelle/HOL [124]
is an interactive proof tool for higher-order logic. Isabelle provides excellent
notational support: allows for the introduction of new notation, use of normal
mathematical symbols, and natural deduction and sequent calculi. New logics
can be introduced by specifying their syntax and rules of inference. Proofs
can be written in a traditional proof style or straightforwardly as sequences of
commands. It comes with a large theory library of formally verified mathemat-
ics, and offers a simple proof formulation language to enable a user to write
comprehensible proof scripts. Isabelle strongly supports inductive definitions,
both in its specification language and in its prover automation.
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Isabelle has many features in common with HOL, whereas, unlike HOL,
Isabelle provides direct support for unification. Unification underlies Isabelle’s
predicate calculus proof procedures, which can prove quite complicated for-
mulae. Much recent work in HOL involves embedded logics. The semantics of
each symbol is expressed in higher-order logic to embed a logic. The parser
generator of Isabelle enables easy definition of the syntax and construction
of rules without programming. This makes it particularly well suited for sup-
porting embedded logics.

Although Isabelle can cope with arbitrary large systems, even infinite in
the number of states, a disadvantage is the necessary interaction of the user
during verification process. On the other hand, model checkers enable auto-
matical verification, whereas their use is usually restricted to small and finite
systems.

FDR [53] is a CSP model checker. It privides the choice of verification
using any of the three models of CSP: Traces Refinement, Failures Refinement,
and Failures-Divergences Refinement. FDR provides a graphical interface for
determining the source of errors by analysing the trace of events that led
up to the error. There are some features of security protocols which make
the verification well-suited to CSP. First, CSP is appropriate for modelling
multi-agent systems which exchange messages with each other. CSP has close
attention to issues such as insecure message transport in a protocol. CSP can
model the insecure process over series of actions as the possible behaviours
it can perform rather than a single action or individual state. In addition,
it is feasible to include time into CSP modelling, either continuous time (in
abstract models) or discrete (for model checking). These properties seem to
be well-related to use of time and time-stamp in security protocols.

SPIN [58] is a generic verification system that supports the design and
verification of asynchronous process systems. SPIN verification models aim
to prove the correctness of process interactions. Unlike other approaches to
model checking, SPIN is focused on asynchronous control rather than syn-
chronous control. To sum up, SPIN aims to provide an intuitive notation for
design specification written in the verification language PROMELA, a con-
cise notation for expressing general correctness requirements in the syntax of
standard Linear Temporal Logic (LTL).

SPIN has its application in temporal logical model checking and in the
protocol verification systems based on on-the-fly reachability analysis. It has
been applied to perform verification run to prove some basic safety properties,
such as absence of deadlock, unreachable code and unspecified receptions, and
prove liveness properties, such as faithful message transfer. Recently, SPIN has
also been applied to the verification of security protocols [103]. The purpose
of applying SPIN to security protocols is to verify their resistance to mali-
cious manipulation, which is usually not required in normal communication
protocols.
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It is observed that the above model checking methods show different ca-
pabilities in different applications under various situations. To the best of our
knowledge, it is not easy to realize fully automatical verification. The selection
of methods may have to depend on the complexity and the types of protocols.

4.5 Summary

The theorem proving has been widely used to validate the key exchange and
authentication protocols in the traditional methods mentioned in Chapter 1.
However, not much work has been found in the model checking of electronic
transaction protocols.

The correctness conditions for electronic transaction protocol usually con-
tain more components than the usual security protocols. Moreover, the num-
ber of messages and participants of electronic transaction protocols is difficult
to bind.

Recently, there are considerable efforts to develop methods for formal anal-
ysis of e-commerce protocols by using model checking. They are concerned
about different specific aspects and usually use different languages or tools.
For example, the failure analysis of e-commerce protocols proposed by [76],
and an automatic analysis of e-commerce protocols proposed by [157] using
the Unified Modeling Language (UML). They are usually too difficult to use
due to the complexity of used languages or tools.

To address these problems, this chapter proposes a verification model
based on ENDL especially used for the validation of electronic transaction
protocols. We can write precise definitions of the behaviour of a protocol (at
any desired level of abstraction), formulate protocol properties and test that
they are satisfied via this model. Moreover, the user interface in this model
provides user with a convenient way to collect the real-time facts and new
knowledge. These policies assist in overcoming the low efficiency and error
prone in theorem proving. In particular, the properties of speediness and ex-
tensibility make it a good complement to the conventional theorem proving.

Some instances of SET and Needham protocols are validated by using this
model. It proves that the model checking is useful and effective in analysing
security protocols.
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Uncertainty Issues in Secure Messages

Traditional protocol analysis ideally assumes that the transmitted messages
are secure and consistent between principals. However, the described hostile
environments might cause inconsistent messages such as intercepted, miss-
ing, or tampered messages, and conflicting beliefs in the messages. It is very
difficult to express these situations using previous methods. Although the in-
consistency of secure messages and the degree of conflicting beliefs can aid
in evaluating the performance of protocols, they are usually uncertain rather
than simply true or false. As important complement to protocol analysis, this
chapter discusses two primary uncertainty issues including the estimation of
inconsistency of messages and the integration of conflicting beliefs. We not
only present intuitive ways to measure both uncertainties but also give some
case studies to illustrate the usefulness of our approaches.

5.1 Introduction

Electronic commerce (e-commerce) has been emerging as a new business
mode, lodging with the electronic funds transfer (EFT), electronic data in-
terchange (EDI), and the World Wide Web (or Internet). The emergence of
e-commerce has innovated upon the current business practice, and broken
through conventional marketing barriers, as activities on the Internet are no
longer limited to time and geography. Thereby, e-commerce presents unprece-
dented potential on cost reduction and the convenience of businesses, as well
as brings new challenges. This has leaded to the development of a great many
e-commerce systems. For example, (1) governments, hospitals and hotels have
purchased their supplies on the Internet, and (2) companies like Cisco and
Dell have been successful in creating electronic storefronts for selling.

With the wide application of e-commerce systems, a number of very serious
limitations to this work have been arisen in part from the fact that purchas-
ing goods or services in e-commerce systems are transmitted through the open
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network that can suffer from the malicious attacks. For example, simply de-
livering the messages such as credit card number on the Internet leaves them
open to fraud. This has led largely to the development of security measures.
To succeed in the fiercely competitive e-commerce marketplace, people must
become fully aware of security threats, utilize the technology that overcomes
them, and win customer’s trust.

In general, security in e-commerce is implemented by relying on a set of
security protocols that meet the user’s expectation for secure transactions. A
good security protocol must be able to state not only the overall objectives
of transactions in terms of integrity and confidentiality, but also the range
of circumstances under which these objectives must be met, otherwise there
may exist the possibility of attacks on the transmitted messages. For example,
users may suspect a transmitted message to be insecure for the incomplete
or ambiguous specification of protocols. Consequently, security protocols have
become the requisite of e-commerce systems. And many methods and tools
have been developed to verify these protocols as described in Chapter 1. How-
ever, their applications are relatively mechanical in e-commerce systems.

A variety of formal methods, representing the belief and/or knowledge
have been developed to analyse the protocols [22]. They are either concerned
with measuring the trust that can be put on the goal by the legitimate commu-
nicants using beliefs of the principals, or analysing the security of a protocol
by examining the knowledge gained by an intruder in the process of the pro-
tocol [24]. Usually, the analysis in the first group starts from formalizing a set
of exchanged messages, applying the inference rules, and then deducing the
stated goal of the protocol.

Nevertheless, there is a lack of true intellectual process by using the in-
consistency removing. This is demonstrated by the fact that the messages
transmitted between principals can be inconsistent owing to the potential
communication block, message lost and/or malicious attacks. Also, in a ma-
licious environment, the belief of principals in transmitted messages can no
longer be justified. And the current formal methods to verify security protocols
usually assume that the principals are trustworthy and the communication
channels are secure, and fail to model insecurity. Thus, it is critical to have
the capability of modelling the imperfect working conditions and verifying the
protocol in such circumstances. Unfortunately, no much effort has been found
to handle the aforementioned problems owing to the difficulty in modelling
the uncertain and insecure situations. This prevents us from evaluating the
performance of the protocol.

A variety of forms of Internet security problems have been reported, such
as viruses, interception and fraud. They can result in the inconsistency issues
mentioned above. One solution is to resend all messages, whereas this is not
an intelligent behaviour. Another solution is to use the modern cryptographic
algorithms such as the block cipher [130] to avoid the conflicting messages.
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This signifies the potential risks that we may run into. Therefore, current
techniques have not touched on the topic of measuring the inconsistency in
secure messages.

There have been considerable efforts to deal with the inconsistency and
uncertainty in knowledge base. Usually, they focus on either merging incon-
sistent knowledge [93, 95, 96] or measuring inconsistency between knowledge
bases [71], or evaluating probability based belief [51]. However, they rarely
talk about dealing with inconsistent messages and conflicting beliefs in mes-
sages. Unlike general knowledge, the characteristics of secure messages need
to be considered.

Compared with the general knowledge, secure messages have some distinct
properties, such as freshness and dynamics. More specifically, before handling
the uncertainty in secure messages, we must not only ensure that they are
not reply attacks but also confirm the messages are really derived from the
sender and received by whom he claims to be. In addition, the principals of
secure messages may be associated with a weight presenting the degree of
importance, such as the hierarchy of trust in Public Key Infrastructure (PKI)
in Figure 3.2. Moreover, the belief relationship for disjunction connectives in
knowledge base cannot be applied in the secure messages for the reason that
the principal should not allow to have ambiguous opinion about the support
of a secure message. For example, let α and β be two secure messages. It is
unallowable for the principal P to support α ∨ β but he must support either α
or β. All these distinct features provide a significant insight into the difficulty
of solving the uncertainty in secure messages.

This chapter first present a formal logical framework [31] designed for es-
timating the inconsistency in secure messages. The approach is based on the
weighting majority and takes into account the freshness and dynamics of se-
cure messages. It achieves (1) measuring the inconsistency in secure messages
with weights that represent the degree of importance of principals; and (2)
analysing the inconsistent secure messages by numerically measuring their
reliability. We also proposes method [33] to handle the inconsistent belief be-
tween principals. It allows probabilistic rules by combining probabilities with
the rule. We propose a probabilistic semantic for ENDL [29], in which the
probabilities of sentences and rules are viewed as observed belief and inferred
belief, respectively, and can be modelled in various levels of detail. A numeric
estimation to the partial belief is presented by computing the minimum trust
in the authenticated goal of the protocol. The examples and experiments
demonstrate that the designed frameworks are effective enhancing existing
formal analysis of security protocols.

The rest of this chapter is organized as follows. Section 5.1 gives a brief
introduction to background knowledge. In Section 5.2, we present the frame-
work to estimate the inconsistency of secure messages, including experiments
using a cash withdraw transaction from ATM. Section 5.3 shows the inte-
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gration of conflicting beliefs in secure messages, and illustrate it using two
experiments. Finally, we conclude our contributions in Section 5.4.

5.2 Estimation of Inconsistency of Secure Messages

Messages that are transmitted between senders, receivers and the third party
may be inconsistent due to potential communication block, message lost
and/or malicious attacks, in an electronic transaction. And current formal
methods to verify security protocols are unable to deal with the inconsistent
secure messages between different principals or at different moments. Ideally,
they assume that the participants of the protocol are trustworthy and the
communication channels are reliable. This may lead to e-commerce activities
at risk. In this chapter, a formal framework is proposed to handle the inconsis-
tency in secure messages using weighting majority, which takes into account
the properties of secure messages. It measures intuitively the inconsistency in
secure messages by providing a numeric estimation, and classifies the secure
messages into three categories by using the results. This enables us to for-
mally verify security protocols under hostile and/or uncertain communication
environments.

5.2.1 Related Work

Information Security in E-Commerce. In general, the business messages
in e-commerce should be electronically transmitted in some manners, and
therefore, security services are required to ensure reliable, trustworthy elec-
tronic transmission of the messages. The security mechanisms are usually
classified into three categories [48, 59, 102] as follows:

• System security means nothing happens to the computer and equipment,
including virus, logic bomb etc.

• Network security means only the authorized users can access the network
and do what he/she can do under the privilege assigned to him/her.

• Data security means how to ensure the integrity and confidentiality of
transmission message.

The primary method to achieve data security is encryption [13, 23] that is
a process of encoding a message so that the meaning of the message is not
obvious. The reverse process is called decryption by transforming an encrypted
message back into its normal form.

The basic methods to achieve the goal of data security are as follows.

• Symmetric cryptography where entities share a common secret key
depicted in Figure 2.2. In symmetric key systems, the primary encryption
algorithm in use is the Data Encryption Standard (DES) [153].
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• Public key cryptography, namely asymmetric cryptography, where
each communicating entity has a unique key pair, a public key and a private
key depicted in Figure 2.3. When one key of a key pair is used to encrypt
a message, the other key from that pair is required to decrypt the mes-
sage. If the private key is used to sign a message, the public key from that
pair must be used to validate the signature. It was introduced by Whit-
field Diffie and Martin Hellman [42]. Diffie-Hellman cryptography is still
used today, but it has some vulnerability to a man-in-the-middle attack.
A popular algorithm used for key pair generation is RSA (Rivest-Shamir-
Adelman) algorithm [132]. Each user generally has two public/private key
pairs. One key pair is used to encrypt session keys and the other to create
digital signatures. These are known as the key exchange key pair and the
signature key pair, respectively.

• Certificate authority is important players in authentication, message
integrity and non-monotonic security measures. Public-private key pairs
are normally registered with a trusted certification authority.

• Digital signature is designed to bind the message originator with the
exact contents of the message. The sender uses his/her private key to
compute the digital signature. In order to calculate the digital signature,
a one-way hashing algorithm (such as SHA-1 [134]) may be used to firstly
calculate a message digest. The sender’s private key is used at this point
to encrypt the message digest. The encrypted message digest is what is
commonly referred to as digital signature.

Except for the above methods, the access control, such as password, fin-
gerprint [161], and smartcard [80] can help to identify authorized users and
provide authentication. In addition, another powerful method is firewall [104].
Erecting a firewall between sensitive transactions information and untrustwor-
thy networks is essential to prevent security break-ins through vulnerabilities
in the operating system.

These security services have been deployed to relieve the security concerns.
Among them, data security of transactions is usually highlighted. Without
the data security, information transmitted over the Internet is susceptible to
fraud and other misuses. Hence the security of electronic commerce has to be
recognized when doing transactions over the open network.

Research into Security Protocols. Security measures are usually in-
tegrated into the security protocols, which are agreement upon methods of
communicating and transmitting data between telecommunication devices. A
number of security protocols, such as communication protocols, authentication
protocols and secure transaction protocols, have been developed to achieve the
security objectives of different layers. Figure 2.1 depicts the function of secu-
rity protocols. Some of the protocols are as follows.
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• Transmission Control Protocol/Internet Protocol (TCP/IP) [64] is a widely
used protocol on the Internet. TCP conducts at the transport layer of
the Open System Interconnection (OSI) model, while IP operates at the
network layer. The transport layer provides data reliability and integrity
checks of the data received. Network layer performs the data routing and
delivery.

• The protocol that underlies the WWW is called the HyperText Trans-
fer/Transport Protocol (HTTP) [151], which handles on the top of TCP
protocol. Its primary purpose is to define message formats, message trans-
missions, and web server and browser commands.

• In order to deal with the security concerns, the SSL (Secure Socket
Layer) [54] is responsible for routing messages across networks from their
source to their destination. SSL adds security inserting itself between the
HTTP application and TCP.

• Secure Electronic Transaction (SET) protocol was developed with the goal
of providing a secure payment environment for the transmission of credit
card data.

In an unstable and even insecure environment where e-commerce systems
are conducted, security in e-commerce systems is implemented by depending
on a set of security protocols. They are responsible for generating, delivering,
encrypting and authenticating secure messages, and achieving the trustworthy
transmission of messages in distributed environment. A good security protocol
must declare not only the objectives of each transaction regarding integrity
and confidentiality but also the range of circumstances under which they must
be met. However, the security protocols easily suffer from malicious attacks
and their designs are a difficult and error-prone task [65].

A variety of methods and tools have been developed to formally analyse the
protocols [97, 120]. This has gained many attentions in recent years, such as
the work in [22, 44, 62]. In [65], they are mainly classified into two categorizes:
those constructing possible attacks using algebraic properties of the algorithms
in the protocols (called attack-construction approaches), and those designing
inferences using specialized logics based on a notion of knowledge and ‘belief’
(called inference-construction approaches).

The verification starts from collecting the authentication messages ex-
changed between principals. It ideally assumes that the communication chan-
nels and principals are secure and trustworthy. However, the messages are
often inconsistent between principals owing to the hostile/uncertain environ-
ment. Unfortunately, the current formal analysis of security protocols are lack-
ing in handling the inconsistent messages.

The modern cryptographic algorithms, such as the public key algo-
rithms [42], secret key algorithms [153] and block cipher [130], have greatly
reduced the inconsistency between principals, whereas there are still latent
risks that are not easily apparent even to careful inspector. For example, the
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sender and receiver may record items with different values possibly due to
system error, message lost or broken cipher. Therefore, such inconsistency is
still a big challenge to us.

Research into Inconsistency. The above problem can be viewed as a
general problem of measuring the inconsistency of secure messages from dif-
ferent principals or at different moments. However, current techniques focus
on dealing with inconsistency in knowledge base rather than secure messages.
There are many approaches in tackling the inconsistency in knowledge bases,
such as, arbitration based information merging [93] and majority based infor-
mation merging [96]. They are a good foundation to deal with the inconsis-
tency in secure messages.

Shaerf and Cadoli [135] proposed the approximating entailment, in which
two sequences of entailment relationship are defined. In [93], Liberatore gave
a merging process arbitration to merge the different views between different
sources of information and investigated the properties any arbitration opera-
tor should satisfy. It intends to preserve as much information as possible after
merging; Lin defined a merging operator by majority in contrast with arbi-
tration to merge knowledge base in [96], and gave formal semantics to merge
multiple knowledge bases with weight using the method of Dalal [39] in [95];
Konieczny considered the problem of merging several belief bases in the pres-
ence of integrity constrains [89], and explored the frontier between merging
operator and arbitration operator in [90]; the epistemic entrenchment is an
ordering over formulae that indicates the preference for which formulae to give
up in case of inconsistency [56]. However, none of them discusses measuring
the inconsistency.

Hunter then proposed a method to measure inconsistency in knowledge
via QC model [71], and presented a framework to evaluate the significance
of inconsistencies [72]. However, the above methods put their emphasis upon
measuring the inconsistency of knowledge rather than secure messages. In
addition, Fagin and Halpern [51], and Campbell et al. [24] have been successful
in dealing with the uncertainty by probabilistic methods but focusing on the
belief of principals.

Although the inconsistency in secure messages has been a big challenge to
the reliability of verification results, no much work has been found in this filed.
In addition, secure messages include distinct properties such as freshness and
dynamics, and every message source may be associated with a weight. This
urges us to develop new methods and techniques to solve such issues.

5.2.2 Semantics Description

This section simply describes the arisen issues and then presents some basic
concepts, symbols and formal semantics.



138 5 Uncertainty Issues in Secure Messages

Problem Description. Like existing verification techniques, we assume
that the secure messages are secure during delivery. However, some secure
messages have been reported with contradictory values as mentioned above.
In other words, this may cause inconsistency.

A logic with three values is adopted in this chapter. In addition to the
truth values t and f, an intermediate truth value u(uncertain) is introduced.
The truth value u virtually indicates an intermediate level of belief between
true (i.e., believe) and false (i.e., disbelieve).

This three-valued logic is chosen because it provides useful ways to repre-
sent the belief in transmitted messages.

1) messages in the first category are definitely insecure to the transaction;
2) whereas messages in the second are surely reliable; and
3) the third cluster is the most important, in which messages are uncertain

to be secure or not.

where the third one prevents us from evaluating the reliability of a transaction.
We have to combine it with the former two categories and provide an intuitive
way to evaluate the inconsistency synthetically .

Moreover, the transmission of secure messages has dynamics properties.
They usually go through the procedure of generating, sending and receiving
among principals. Furthermore, the freshness is a prerequisite of secure mes-
sages to ensure their validity, which is usually realized by timestamp. This
is in contrast with existing approaches such as [71, 95] where they do not
take into account the dynamics and freshness properties of secure messages.
In addition, the notion of entailment is used to depict the causality of a secure
message, such as generating and sending, sending and receiving of a secure
message. For brevity, the integrity and confidentiality of secure messages are
not considered in this framework.

Example 5.1. Suppose φ = X knows m ∧ X knows symmetric key k, ϕ =
X knows e(m, k), ϕ is hence entailed by {φ → ϕ, φ}. Actually, it can be
described as (φ → ϕ) ∧ φ ⇒ ϕ.

On the other hand, it is possible that the views of some principals are regarded
as being more important than the views of the others, such as the different
certificate authorities in PKI tree of Figure 3.2. They are usually assigned
with weight to present their degree of importance. It is obvious that CARoot
has the highest authority in the PKI tree.

As already mentioned the existing methods focus on merging knowledge
base and do not provide a way to handle the inconsistency in secure messages.
This chapter hence proposes a formal framework to deal with the inconsistency
in secure messages with weight, in which it takes into account the dynamics
and freshness properties of secure messages. It intends to ensure the reliability
of verification results of security protocols.
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Basic Symbols and Formal Semantics. Suppose L denotes a set of
proposition formulae formed in the usual way from a set of atom symbols A.
In particular, A can contain α and ¬α for some atom α. The logical operators
∧, ∨, ¬ and → denote the connectives. We use variables X, Y, P and CA for
principals, Greek letters ϕ, φ and ψ for formulae, Texpiration for expiration
time of message, T for timestamp, and m, α, γ, θ, µ and β ∈ A for messages
in general. Let ≡ be logical equivalence. A model of a formula φ is a possible
set of atoms where φ is true in the usual sense. � is the weight of message
sources. Let k be a key.

On the other hand, there are some operations on a message, which consist
of encryption, signature and message digest.

• e(m, k) represents the message m is encrypted by the symmetric key k ;
• S (m, k) represents the signed message m by the private signature key k ;
• E (m, k) represents the message m is encrypted by the public key-exchange

key k ;
• H (m) represents the hashing of message m.

In particular, when the message digest of a message is encrypted using a
sender’s private key, and is appended to the original message, the result is
then known as the digital signature of the message. The above function words
are the infrastructure necessary to describe the complicated cryptographic
operations. For brevity, the technique details are ignored here since we focus
on dealing with the inconsistency in secure messages. In addition, we have the
following operators:

• <- , -> :: Message1 × Message2 −→ Message, which denotes a set of mes-
sages. Moreover, each of them can be a combination of several messages.

• - sends - , - :: Principal1 × Principal2 × Message −→ Formula, which
denotes the message was transmitted from Principal1 to Principal2.

• - generates -:: Principal × Message −→ Formula, which denotes the mes-
sage is generated by Principal.

• - knows -:: Principal × Message −→ Formula, which denotes the message
is known by Principal.

• - sees -:: Principal × Message −→ Formula, which denotes the message
has been received by Principal.

• fresh :: Message ⇒ Formula, which denotes the message is not a replay
message.

• - believes - , - :: Principal1 × Principal2 × Message −→ Formula, which
denotes Principal1 believes the message is fresh, and really from Principal2 .

Example 5.2. Suppose m, m1 and m2 are messages and P1 and P2 are princi-
pals. <m1, m2> denotes a combination of messages; ‘P1 sends P2, m” denotes
the message m is sent from P1 to P2; ‘P1 generates m” denotes m is gener-
ated by P1; ‘P1 knows m” denotes m is known by P1; ‘P2 sees m” represents
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principal P2 has received message m; ‘fresh m” represents m is fresh and not
a replay of the previous messages; ‘P2 believes P1, m” denotes P2 believes
the message m is fresh and really from P1.

In general, facts are stated in the form of expressions called sentences, or
sometimes well-formed formulae. We define an atomic sentence is formed from
an n-ary relation operator π mentioned above and n atom symbols a1, a2,
. . ., an, by combining them as follows.

π (a1, a2, . . ., an)

where the atom symbols can be principals, such as sender and receiver, and
messages, such as plaintext and ciphertext.

Example 5.3. ‘knows(Alice, <m1, m2, . . ., mn>)’, ‘sends(Alice, Bob, <m1,
m2, . . ., mn>)’, ‘generates(Alice, <m1, m2, . . ., mn>)’, and ‘sees(Bob, <m1,
m2, . . ., mn>)’ are atomic sentences. ‘fresh(m)’ is regarded as an atomic
sentence as well.

Atomic sentences can be logically combined with logical operators. And we
are able to express facts that cannot be conveniently expressed by atomic
sentences.

Suppose S 1 and S 2 are two atomic sentences. A negation is formed using
the ¬ operator, such as ¬S 1 and ¬S 2. A conjunction is a set of sentences con-
nected by the ∧ operator, such as S 1 ∧ S 2. A disjunction is a set of sentences
connected by the ∨ operator, such as S 1 ∨ S 2. An implication is formed using
the→ operator, such as S 1 → S 2. In particular, an universally quantified sen-
tence is formed by combing the universal quantifier ∀, a variable ν, and any
simpler sentence ψ. The intended meaning is that the sentence ψ is true, no
matter what object the variable ν represents. Similarly, an existentially quan-
tified sentence is formed by combing the existential quantifier ∃, a variable ν,
and any simpler sentence ψ. The intended meaning is that the sentence ψ is
true, for at least one object in the universe of disclosure.

There exists entailment relationship between the above operators. Further-
more, we have:

Generating:

∀ P, 	 P generates m → P knows m

states that if message m is generated by P, then P should know m.

Sending:

∀ P, 	 P knows m → P sends Q, m

states that if P knows message m, then P can send the message m to the
receiver Q.
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Receiving:

∀ P, 	 P sends Q, m → Q sees m

states that if P sends message m to Q, then Q can see message m.
According to the above relations, we can conclude (	 generates(P, m) →

knows(P, m)) ∧ (	 knows(P, m) → sends(P, Q, m)) ∧ (	 sends(P, Q, m) →
sees(Q, m)) ⇒ sees(Q, m). However, this cannot guarantee that the message
m is reliable without regard to its freshness.

Rationality:

∀ Q, 	 Q sees m ∧ fresh m ⇒ Q believes P, m

states that if Q sees message m from P and m is fresh, then it is reasonable
to say Q believes m. P in fact indicates any principals who sent message m
to Q.

From the above axioms, we can have the proposition below, which include
the message generating, sending and receiving between principals to authen-
ticate the message.

Proposition 5.1. P generates message m and sends it to Q. If Q sees message
m and m is fresh, then P believes Q in message m.

	 P generates m ∧ P sends Q, m ∧ fresh m ⇒ Q believes P, m

where the principal P generates the message m and then sends it to the
principal Q. If Q receives this message and confirms it is fresh, it is reasonable
for principal Q to believe the message m sent from P. However, it does not
imply principal Q believes the integrity and confidentiality of m, which need
to be validated further by using other methods such as [29]. The knows, sends
and sees operators actually represent the dynamics property of the generating,
sending and receiving of secure messages. In addition, the message m can be
a combination of messages, such as m = {α, β}. Moreover, the implication α
→ β is used to denote a special message called inference rule, in which the
entailment relationship between α and β is defined.

In the following proof, the � on the right indicates that the associated
sentences are in the initial database, and the number indicates the sentences
from which the current sentence is derived.

Proof:
(1) generates(P, m) [�]
(2) fresh(m) [�]
(3) knows(P, m) [1, Generating ]
(4) sends(P, Q, m) [3, Sending]
(5) sees(Q, m) [4, Receiving]
(6) believes(Q, P, m) [2, 5, Rationality]
�
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Definition 5.1. Let M = {m1, m2, . . ., mn} be a set of secure messages. The
set of messages derived from sender, receiver and the third party are denoted
by MS , MR and MT = {MT1 , . . ., MTk

}, respectively.

The above sets of message can be viewed as principals’ datasets. They are
responsible for recording the messages that have been generated, sent or re-
ceived between the principals. Ideally, it assumes that these messages should
be consistent with each other in the aforementioned verification of security
protocols.

Example 5.4. Suppose an electronic transaction may involve the Buyer, Seller
and Bank. In general, the transaction has to be gradually authorized by ATM,
branch and head office. The head office is viewed as the third party in this case.
Therefore, we can obtain the set of exchanged messages using M = {M buyer ,
M seller , M ATM , M branch, M headoffice}.
The users usually need to check its freshness after receiving a message. To
achieve the objective, timestamps have been widely accepted by the formal
analysis of security protocols.

Definition 5.2. Let T be a timestamp attached to message m. If |Clock−T| <
�t1 + �t2 regarding received messages or T < Texpiration regarding generated
messages then m is fresh; otherwise m is viewed as a replay.

where the meaning of Clock, �t1 and �t2 can be seen in [40]. In addition,
Texpiration denotes the expiration time, which is designated to messages when
they are generated. A timestamp serves three purposes: it can communicate
the creator’s local time, the creator’s time zone, and the actual time in UTC
(Universal Time Code). If the clock synchronization of both parties is difficult,
a trusted third party can intervene as a notary and use its own clock as a
reference [87, 143]. The timestamp plays an important role in preventing the
replays of former transmitted secure messages.

Example 5.5. Suppose Clock is 8 Oct 2004 15:53:11 +0200. The timestamp
attached to a received message m is

8 Oct 2004 15:53:10 +0200

indicates that the creator’s local time is 15:53:10, that the creator’s time zone
is +0200 (two hours east of UTC ), and that the actual time is 8 Oct 2004
13:53:10 in UTC. Let �t2 = 0.04. Let server’s clock be 8 Oct 2004 15:53:12
+0200, then �t1 = |12 − 11| = 1. Thus, the message m is fresh due to
|Clock−T | = |10 − 11| = 1 < �t1 + �t2 = 1 + 0.04 = 1.04.

Definition 5.3. Let |=support be a supporting relationship. For a set of secure
message M, M |=support is defined as follows, where α is an atom in A, and
each of them virtually denotes a message.
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⎧

⎨

⎩

MS |=support α iff ‘MS knows α” and ‘α is fresh”
MR |=support α iff ‘MR believes MS , α” and ‘α is fresh”
MT |=support α iff ‘MT believes MS , α” and ‘α is fresh”

where MS , MR and MT represent the set of message of sender, receiver and the
third party, respectively. The receiver and the third party can receive messages
from different senders. As mentioned above, the sender decides whether a
generated message α is fresh using T < Texpiration, whereas the receiver and
the third party need to determine the freshness of α using |Clock−T| < �t1
+ �t2 after receiving α from the sender.

Example 5.6. Suppose the timestamp attached to a generated message m by
a sender S is

18 Sept 2004 10:38:18 +0200.

Let the expiration time T expiration be 18 Sept 2004 10:40:18 +0200. Thus,
m is fresh owing to T <T expiration. Moreover, we have S generates m ⇒ S
knows m in terms of the Generating axiom. Therefore, we have S generates
m ∧ m is fresh ⇒ S knows m ∧ m is fresh ⇒ S |=support m.

The supporting relationship takes into account not only the dynamics property
but also the freshness property of secure messages. The former is realized by
means of the knows and sees operators that provide user a useful way to
describe the dynamic transmission of secure messages. And, the freshness of
secure messages is protected by relying on the discriminant of timestamp.

As mentioned above, the rule presents an entailment relationship among
messages. In particular, the conditions of a rule can be the conclusion of other
rules.

Definition 5.4. Suppose α1, . . ., αn (n ≥ 1 ) represent secure messages. Let
α1 → α2, α2 → α3, . . ., αn−1 → αn be entailment relationships. Then we can
deduce a new rule below if they are true.

α1 → α2 ∧ α2 → α3 ∧ . . . ∧ αn−1 → αn ⇒ α1 → αn

These entailment relationships virtually denote the basic operation, such as
encryption, decryption, signature and hashing of cryptography.

Example 5.7. 1) If John knows message m and Alice’s public key-exchange
key Kpb(Alice) then he knows E (m, Kpb(Alice)), which represents the mes-
sage m was encrypted by Kpb(Alice), namely ‘knows(John, m) ∧ knows(John,
Kpb(Alice)) → knows(John, E (m, Kpb(Alice)))’; and 2) if John knows mes-
sage m encrypted by Kpb(Alice), then he can send the encrypted m to
Alice, namely ‘knows(John, E (m, Kpb(Alice))) → sends(John, Alice, E (m,
Kpb(Alice)))’. A new rule can then be derived from them. If John knows k
and m, then he can send the encrypted m to Alice for the reason that the
result of the first rule is actually the condition of the second rule. As a re-
sult, John is able to send the E (m, k) to Alice, namely ‘knows(John, m) ∧
knows(John, Kpb(Alice)) → sends(John, Alice, E (m, Kpb(Alice)))’.
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In the same way, we have (1) ‘knows(John, m ∧ k) → sends(John, Alice,
e(m, k))’; (2) ‘knows(John, m ∧ Spv(John)) → sends(John, Alice, S (m,
Spv(John)))’; and (3) ‘knows(John, m) → sends(John, Alice, H (m))’, in
which k and Spv(John) indicate the symmetric key shared between John and
Alice and John’s private signature key, respectively.

We define the relevant implication below in order to provide semantics
basis for an analog to modus ponens. We do this by providing constraints. A
supporting relationship should satisfy these constraints. Currently, there are
just four constraints included. It is feasible for us to add more constraints if
it is needed.

Let δ be a conjunction of atoms, and α and β be atoms in the usual sense.
They have the following properties.

• Conjunction constraint : M |=support α ∧ β iff M |=support α and M
|=support β.

• Implication constraint : If M |=support δ → α and M |=support δ, then M
|=support α.

• Transitivity constraint : If M |=support δ → αi and M |=support α1 ∧ . . . ∧
αn → β, then M |=support α1 ∧ . . . ∧ αi−1 ∧ δ ∧ αi+1 ∧ . . . ∧ αn → β.

• Negation constraint : If M |=support δ → ¬β, then M |=support ¬(δ → β).

5.2.3 Measuring Inconsistency in Secure Messages

In this section, we aim to provide a numerical estimation for the inconsistency
in secure messages. We want to reflect each inconsistent set of formulae in a
model, and then measure the inconsistency in the model. Obviously, this is
not possible in classical logic, or indeed many non-classical logics, because
there is no model of an inconsistent set of formulae [71]. Quasi-classical logic
(QC logic) is motivated by the need to handle beliefs. It is intended to be a
logic of beliefs in the “real world” rather than a logic of truths in the “real
world”. Models are based on a form of Herbrand interpretation.

Definition 5.5. Let A be a set of atoms. Let O be a set of objects, where +α
and −α represent positive object and negative object, respectively.

O = {+α | α ∈ A} ∪ {−α | α ∈ A}
Example 5.8. Suppose ‘The price is four thousand pounds’ is encrypted, in
which a message block in cryptogram includes two letters, c1, c2, c3, c4, c5,
c6, c7, c8, c9, c10, c11, c12, c13, c14. Let α = ‘four thousand pounds’. The
attacker can manipulate it so that only c1, c2, c3, c4, c5, c6, c7, c12, c13, c14

is received [130]. As a result, ‘four thousand pounds’ and ‘four pounds’ are
viewed as a positive object and a negative object in a model, respectively.

This section gives a formal definition of measuring operator having a majority
behaviour by merging individual beliefs together. For brevity, it assumes that
the messages from message sources are proved to be fresh and reliable.
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Definition 5.6. Let M ∈ ℘(L), X ∈ ℘(A) and let X |=support M denote that X
|=support α holds for every α in M. The set of models of M is then defined as:

model(M ) = {X ∈ ℘(A) | X |=support M }
where M denotes a set of secure messages. The model of M actually represents
a set of atoms that can support M.

As for each atom α ∈ MR or α ∈ MT , X |=support α means we can infer
that the principal believes α and α is fresh. On the contrary, X �support α or
X |=support ¬α represents that the principal does not believe α. Given α ∈
M, the conditions to support α can be seen in Section 5.2.2.

Example 5.9. Let M = {α, ¬β, γ, α ∧ φ}, where α, β, γ, φ ∈ A, and let X
= {α, −β, α ∧ −β → γ, φ}. So X |=support α and X |=support ¬β. Also, X
|=support α ∧ ¬β → γ. Hence X |=support γ, and X |=support α ∧ φ. Hence
every formula in M is supported by X, namely X |=support M. Note that
it assumes that all the elements supported by M are fresh, and are really
generated or sent by the expected principals.

According to the above definition, it is observed that the model of a collection
of messages is independent of the syntactic forms of the messages.

Proposition 5.2. For all i, j ≥ 1, i �= j, ∃ Mi and Mj ∈ ℘(L), if Mi ≡ Mj,
then

model(Mi) ≡ model(Mj)

Proof. Assume to be the contrary that model(Mi) �≡ model(Mj). Then there
exist X ∈ ℘(A) and X |=support Mi, such that X �|=support Mj . Let α ∈ X be
an atom that can be inferred from Mi, namely Mi |=support α. Our task is to
find a contradiction.

According to the above assumption, X �|=support Mj , it is possible that α
can not be inferred from Mj , namely Mj �|=support α. Hence it is natural to
draw the conclusion Mi �≡ Mj .

This contradicts the fact that Mi ≡ Mj . �
This property is important for we are considering dealing with the inconsis-

tency in secure messages with entailment relationship, and logically equivalent
sets of message have the same messages.

Although the definition of models and supporting relationship provide us
with basic concepts of inconsistency in secure messages, the set of models may
include some irrelevant elements. In the last example, if X

′
= X ∪ {ψ}, then

X
′ |=support M. Hence X

′ ∈ model(M ) in terms of the definition, in which
the atom ψ is regarded as an irrelevant element to M for it does not belong
to M. The irrelevant elements to M should not be considered in the model of
M for it contributes nothing to measure the inconsistency in secure messages.

Let Atoms(M ) be the set of atom symbols in message source M, such
as Atoms({α, −β, γ, α ∧ φ}) = {α, −β, γ, φ}. Suppose ‖M ‖ returns the
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number of the set of atom symbols of M, such as ‖{α, −β, γ, α ∧ φ}‖ = 4.
In particular, if M is the union of several sets of messages, then the repeated
atoms will be reserved and counted, such as ‖{α, α, −β, γ, α ∧ φ}‖ = 5.

In order to deal with inconsistency, we use equivalence models including
no the irrelevant atoms.

Definition 5.7. Let MP ∈ ℘(L) and let EQmodel(MP ) be the equivalence
model for message source MP , defined as follows:

EQmodel(M P ) = {X ∈ model(MP ) | ∀ α ∈ Atoms(MP ), then α ∈ X
and ‖X ‖ = ‖MP ‖}

Example 5.10. Let α, β, γ and θ ∈ A be atoms of message sources in the
following sets of formulae .

(1) EQmodel({α, β, α → γ}) ≡ {+α, +β, +γ}
(2) EQmodel({α ∧ β, −γ}) ≡ {+α, +β, −γ}
(3) EQmodel({α, α → β, −γ, β ∧ −γ → θ}) ≡ {+α, +β, −γ, +θ}

In (1), M = {α, β, α → γ} |=support α, M |=support β, M |=support α → γ
⇒ M |=support γ and Atoms({α, β, α → γ}) = {α, β, γ}, so the equivalent
model of M is {α, β, γ} in terms of the implication constraint ; in (2), M =
{α ∧ β, −γ} |=support α ∧ β ⇒ M |=support α and M |=support β, M |=support

−γ, and Atoms({α ∧ β, −γ}) = {α, β, −γ}, so we can infer the equivalent
model {α, β, −γ}; in (3), M = {α, α → β, ¬γ, β ∧ ¬γ → θ} |=support α, M
|=support α → β ⇒ M |=support β, M |=support ¬γ, M |=support β ∧ ¬γ → θ
⇒ M |=support α ∧ ¬γ ⇒ M |=support θ, and Atoms({α, α → β, ¬γ, β ∧ ¬γ
→ θ}) = {α, β, −γ, θ}, so we can conclude {α, β, −γ, θ}.
Proposition 5.3. For all i, j ≥ 1, i �= j, ∃ Mi and Mj ∈ ℘(L), if Mi ≡ Mj,
then

EQmodel(Mi) ≡ EQmodel(Mj)

Proof. Let X ∈ model(Mi). Suppose X−
ir ∈ model(Mi) is the set of atoms,

which does not include the irrelevant elements to X ∈ ℘(A). Hence X−
ir ⊆ X,

and ‖X−
ir‖ = ‖Mi‖ = ‖Mj‖.

For Mi and Mj ∈ ℘(L), if Mi ≡Mj , then model(Mi) ≡ model(Mj) in terms
of the proved Proposition 5.2. Then, ∀ X ∈ model(Mi), X |=support Mi and
X ∈ model(Mj), X |=support Mj .

Since X−
ir ⊆ X, this means, for all X−

ir , X−
ir ∈ model(Mi) and X−

ir ∈
model(Mj). Hence we can obtain EQmodel(Mi) ≡ EQmodel(Mj) according to
the Definition 5.2. �
The above description gives the definition with respect to the supporting
relationship between secure messages and principals. To evaluate the degree
of support for the secure messages, it is quantified by defining the cardinality
of a supporting set of the messages.
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Definition 5.8. Let α ∈ A be an atom. |αM | is the total number of α sup-
ported by the equivalence model of M.

Example 5.11. Let α and β be atoms. Let M = {α, α, α → β, ¬γ}. Hence we
have EQmodel(M ) = {+α, +α, +β, −γ} according to the Definition 5.1 and
Definition 5.2. Then we can obtain |+αM | = 2, |+βM | = 1, and |−γM | = 1.
Also, |−αM | = |−βM | = |+γM | = 0 because −α, −β and +γ are not found
in the equivalence model of M.

Definition 5.9. The support function from A to [0, 1] is defined below when
α is not empty, and |M |=support ∅| = 0.

|M |=support α| = |+ αM |
|+ αM | + | − αM | × 100

where |+αM | is the number of occurrence of the set of α in the equivalence
model of M. If |M |=support α| = 0, then we can say M has no opinion upon α
and vice versa; if |M |=support α| = 1, this indicates that there is no negative
object −α in the set of message M ; if |M |=support α| = c, 0<c<1, it represents
that α is partially supported by M.

Example 5.12. Let α, β and γ be atoms. Suppose M is the same as Example
5.11. Since EQmodel(M ) = {+α, +α, +β, −γ}, we can get |M |=support α|
= |+αM |/( |+αM | + |−αM |) = 2/( 2 + 0) = 1; |M |=support ¬α| = 0; |M
|=support β| = 1/( 1 + 0) = 1; |M |=support ¬β| = 0; |M |=support γ| = 0; and
|M |=support ¬γ| = 1/( 1 + 0) = 1.

In the last definition, we give a function to calculate the degree that a message
source M supports α. Then the reliability between α and a set of message
sources is defined below.

Definition 5.10. The set of secure messages {MS, MR, MT } is defined as
the sum of supports between α and each MP , P∈{S, R, T}, and |MS �MR �
MT |=support ∅| = 0.

reliability(α) = |MS �MR �MT |=support α|

where the � denotes a multiset union operation but the repeated items are
reserved, such as {α, ¬β} � {α} = {α, α, ¬β}. Moreover α and β have to
be fresh in each principal’s message set in terms of the above definitions. In
addition, if |MS �MR �MT |=support α| = 0 then reliability(α) = 0, which
represents the principals do not support α.

In particular, if reliability(α) = reliability(¬α) = 50%, then MS , MR and
MT are fully conflicting with respect to α. In other words, the principals are
inconsistent in regard to α.
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Example 5.13. Let α, β, γ and θ be atoms. Let M S = {α, β, γ, α ∧ β ∧ γ
→ θ}, M R = {α, ¬β, γ, α ∧ ¬β ∧ γ → ¬θ}, and M T = {α, β, ¬γ, ¬θ}.
Then, M S � M R � M T = {α, β, γ, α ∧ β ∧ γ → θ, α, ¬β, γ, α ∧ ¬β ∧
γ → ¬θ, α, β, ¬γ, ¬θ}. From the union of the message sources, we can infer
EQmodel(M S � M R � M T ) = {+α, +α, +α, +β, −β, +β, +γ, +γ, −γ, +θ,
−θ, −θ}. Hence |+αMS�MR�MT | = 3, |βMS�MR�MT | = 2, |−βMS�MR�MT |
= 1, |+γMS�MR�MT | = 2, |−γMS�MR�MT | = 1, |+θMS�MR�MT | = 1, and
|−θMS�MR�MT | = 2. As a result, we have reliability(α) = 3/(3 + 0) = 1,
reliability(¬α) = 0, reliability(β) = 2/(2 + 1) 2/3, reliability(¬β) = 1/(2 +
1) = 1/3, reliability(γ) = 2/(2 + 1) = 2/3, reliability(¬γ) = 1/(2 + 1) = 1/3,
reliability(θ) = 1/(2 + 1) = 1/3 and reliability(¬θ) = 2/(2 + 1) = 2/3.

The above description assumes that the principals have equivalent degree of
importance. However, they are usually associated with different weights in
practical circumstances. For example, CARoot, GCA, and CCA in Figure 3.2.
present a trust tree of certificate authorities, in which they have different levels
of authority.

In this chapter, a special supporting relationship called weighted support-
ing is hence proposed where � is a function that assigns each principal P a
non-negative number representing the weight of P, 0 ≤�≤ 1. It is possible
that S and R are occasionally treated with equivalent weight under the con-
sideration of fairness. The weight function � in fact represents the degree of
importance of the principals. If �A > �B, A �= B, it shows that A is more
important than B, and more of its opinion will be reflected in the result of
measuring the inconsistency in secure messages. In particular, if the weight of
a principal is assigned zero, then it is deemed to be unreliable and its views
will not be taken into account when computing the reliability.

Definition 5.11. Let �S, �R and �T be the weight of MS , MR and MT re-
spectively, and let |αi| be the sum of occurrence of the set of α in the message
sources i ∈{S, R, T}. The weighted reliability between α and the set of mes-
sage sources {MS, MR, MT } is then defined as follows. In particular, if α is
empty then reliability(∅, �) = 0.

reliability(α,�) =

∑

i∈{S,R,T} |+ αi| ∗�i
∑

i∈{S,R,T}(|+ αi|+ | − αi|) ∗�i

The above method is adopted to quantify the support between an atom α
(a message) and the set of message sources {MS , MR, MT }. In this chapter,
we define 50% as the minimum support threshold for reliability of any atoms,
written as minsupport. In this scenario, the number of occurrence of α and ¬α
are equivalent, so the sources of secure messages are definitely conflicting. We
are just able to say the security of message α is uncertain even the reliability
of α is over 0.5 but under 1.
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Proposition 5.4. Let Mi (i ∈ [1, n]) be a set of message sources and � and
�

′
be two weight functions. If �

′
i = k * �i(k > 0 ) for i = 1, . . ., n, then

reliability(α, �) = reliability(α, �
′
)

Proof. Since �
′
i = k * �i (k > 0), we have

reliability(α,�
′
) =

∑

i∈[1,...,n] |+ αi| ∗�′
i

∑

i∈[1,...,n](|+ αi|+ | − αi|) ∗�′
i

=

∑

i∈[1,...,n] |+ αi| ∗�i ∗ k
∑

i∈[1,...,n](|+ αi|+ | − αi|) ∗�i ∗ k

=

∑

i∈[1,...,n] |+ αi| ∗�i
∑

i∈[1,...,n](|+ αi|+ | − αi|) ∗�i

Hence, the proposition is true. �

Proposition 5.5. Let α be an atom and let Mi(i ∈ [1, n]) be message sources
and �i (i ∈ [1, n]) be its weight. Then, if the message source Mi are consistent
in α and for all i ∈ [1, n], �i �= 0, then.

reliability(α, �) = 1

Proof. Since the message sources Mi are consistent with respect to α, there
is no negative object of α in the message sources. Hence we have |−αi| = 0
for all i ∈ [1, n]. Then

reliability(α,�) =

∑

i∈[1,...,n] |+ αi| ∗�i
∑

i∈[1,...,n](|+ αi|+ | − αi|) ∗�i

=

∑

i∈[1,...,n] |+ αi| ∗�i
∑

i∈[1,...,n](|+ αi|+ 0) ∗�i

=

∑

i∈[1,...,n] |+ αi| ∗�i
∑

i∈[1,...,n](|+ αi|) ∗�i
= 1

Hence, the proposition is true. �
In general, if the reliability on message α is higher, it implies that the

secure message sources have lower inconsistency in respect of the message α
and vice versa.

The next consequence presents that the message sources that do not sup-
port α or are assigned the weight of zero can be discarded without influencing
the result of computing the reliability on α.
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Proposition 5.6. Let Mi(i ∈ [1, n]) be message sources. Let α be an atom.
If Mi �|=support α or �i = 0 then

reliability(α,�) =

∑

j∈[1,...,i−1,i+1,...,n] |+ αj | ∗�j
∑

j∈[1,...,i−1,i+1,...,n](|+ αj |+ | − αj |) ∗�j

Proof. If �i = 0, then obviously |+αi| * �i = 0 and (|+αi| + |−αi|) * �i = 0;
if Mi �|=support α, then the reliability(α) by Mi is equal to zero in terms of the
definition of reliability. In either case, the opinion of Mi should be discarded
from measuring the reliability. �

Based on the above definitions, the belief in secure messages is defined as
follows.

Definition 5.12. Let α ∈ ℘(A), and � be the weight of message sources. The
principal’s belief of in α is defined as follows.

belief(α) =

⎧

⎨

⎩

secure if reliability(α, �) = 1
insecure if reliability(α, �) ≤ minsupport
uncertain if reliability(α, �) > minsupport

where the ‘secure’ indicates that there is no negative object of α in the prin-
cipals’ messages, so we can say the principals are consistent with respect to
α in the transaction; the ‘insecure’ indicates the belief in α is completely in-
consistent; and the ‘uncertain’ indicates the message α is partially trusted,
whereas the users have to make further verification to confirm its reliability.

Theorem 5.1. Suppose Mi(i ∈ S, S ⊆ [1, n]) is consistent with respect to α
and �i �= 0. If Mi |=support α and α is not mentioned by any other Mj(j ∈
[1, n] and j �= i) then

belief(α) = ‘secure’

Proof. Since α is not included in Mj (j ∈ [1, n] and j �= i), Mj does not
support α, namely Mj �|=support α. Therefore, it is natural that the effect of
Mj on the reliability of α can be ignored. According to Proposition 5.6, we
have

reliability(α,�) =
∑

i∈S |+ αi| ∗�i
∑

i∈S(|+ αj |+ | − αi|) ∗�i

Since Mi |=support α, there is no negative object of α in them. Hence we have
|−αi| = 0 for all i ∈ S, S ⊆ [1, n]. Let Mi (i ∈ S ) be a set of messages. Since
�i �= 0, we have

reliability(α, �) = 1

in terms of the Proposition 5.5. Hence we have belief (α) = secure according
to Definition 5.12. From this the theorem follows. �
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5.2.4 Examples of Measuring Inconsistency

For simplicity, it assumes that all the messages held by the secure message
sources are fresh in the examples below. Also, the messages are assumed to
be generated and sent by the sender and received and seen by whom it claims
to be. Let α, β, γ, µ and θ be messages, which can be plaintext, ciphertext,
symmetric key, signature key and so on.

Example 5.14. Suppose M S = {α, β, α ∧ β → γ}, M R = {¬α, β, ¬α ∧ β →
¬γ}, and M T = {α, β, γ}. Let their weight be �(MS) = �(MR) = 0.3, but
�(MT ) = 0.4.

Then EQmodel(MS) ≡ EQmodel(MT ) ≡ {+α, +β, +γ} and EQmodel(MR)
≡ {−α, +β, −γ}. Hence M S � M R� M T = {α, β, γ, α, β, γ, −α, β, −γ},
|M S � M R� M T |=support α | = 2, |M S � M R� M T |=support ¬α | = 1, |M S

� M R� M T |=support β | = 3, |M S � M R� M T |=support γ | = 2, |M S �
M R� M T |=support ¬γ | = 1.

Finally, we can work out reliability(α, �) = (0.3 + 0.4)/(0.3 + 0.3 +0.4) =
0.7, reliability(β, �) = (0.3 + 0.3 + 0.4)/(0.3 + 0.3 +0.4) = 1 and reliability(γ,
�) = (0.3 + 0.4)/(0.3 + 0.3 +0.4) = 0.7. So belief (α) = ‘uncertain’, belief (β)
= ‘secure’ and belief (γ) = ‘uncertain’.

In the set of messages MS , α ∧ β is supported by MS because MS supports
both α and β. The result indicates that β is secure since the belief in β is
equal to 1. The reliability of α and γ needs to be further validated because
the belief in them is over the minimal support 50% but under 1. To better
understand this instance, α, β and γ can be viewed as message m, symmetric
key k and encrypted message e(m, k) respectively. Hence α ∧ β → γ can be
regarded as P knows m ∧ P knows k → P knows e(m, k).

Example 5.15. Suppose M S , M R and M T are the same as the last example.
Let �(MS) = �(MR) = 0.2, but �(MT ) = 0.6.

Then, we have reliability(α, �) = (0.2 + 0.6)/(0.2 + 0.2 +0.6) = 0.8, reliabil-
ity(β, �) = 1 and reliability(γ, �) = 0.8 according to Proposition 5.6. Hence
belief (α) = ‘uncertain’, belief (β) = ‘secure’ and belief (γ) = ‘uncertain’ in
terms of Definition 5.12.

In this case, the third party is assigned a higher weight than last example.
Actually, it is usually reasonable to put more trust on the third party like
trust centre. There is no change to the belief in β because the principals do
not contain its negative object. On the other hand, the belief in α and γ
increases because they receive more support form the principals.

Example 5.16. Suppose the weight of M S , M R and M T keeps the same as
Example 5.15. Let M S = {¬α, β, ¬α ∧ β → γ}, M R = {¬α, ¬β, ¬α ∧ ¬β
→ ¬γ}, and M T = {¬α, β, γ}
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Then we have EQmodel(MS) ≡ EQmodel(MT ) ≡ {−α, +β, +γ} and EQ-
model(MR) ≡ {−α, −β, −γ} in terms of the constraints defined above. Hence
M S � M R� M T = {¬α, β, γ, ¬α, β, γ, ¬α, ¬β, ¬γ}, and |M S � M R� M T

|=support α | = 0, |M S � M R� M T |=support ¬α | = 3, |M S � M R� M T

|=support β | = 2, |M S � M R� M T |=support ¬β | = 1, |M S � M R� M T

|=support γ | = 2, and |M S � M R� M T |=support ¬γ | = 1.
In contrast to Example 5.14, we can see that no message source supports

α. Hence it is reasonable to have reliability(α, �) = 0 according to Proposition
5.6. In addition, we can get reliability(β, �) = (0.2 + 0.6)/(0.2 + 0.6 + 0.2) =
0.8, reliability(γ, �) = (0.2 + 0.6)/(0.2 + 0.6 + 0.2) = 0.8. Therefore, we have
belief (α) = ‘insecure’, belief (β) = ‘uncertain’ and belief (γ) = ‘uncertain’ in
terms of Definition 5.12.

Example 5.17. Let M S = {α ∧ β, γ}, M R = {¬α ∧ γ} and M T = {¬α, ¬β,
γ}. Let their weights be �(MS) = 0.4, �(MR) = 0.2 and �(MT ) = 0.4.

Then EQmodel(MS) ≡ {+α, +β, +γ}, EQmodel(MR) ≡ {−α, +γ} and EQ-
model(MT ) ≡ {−α, −β, +γ}. Hence reliability(α, �) = 0.4/(0.4 + 0.2 + 0.4)
= 0.4, reliability(β, �) = 0.4/(0.4 + 0.4) = 0.5 and reliability(γ, �) = 1. As
a result, we have belief (α) = ‘insecure’, belief (β) = ‘insecure’ and belief (γ)
= ‘secure’ according to Proposition 5.6.

The support for β from the receiver is regarded as zero because β is not
included in MR. The zero may indicate the receiver has not obtained this
message. Hence the impact of MR on β is discarded in terms of Theorem 5.1.
However, the message β is still deemed to be insecure according to Proposition
5.6, though its reliability is exactly equal to 50%.

Example 5.18. Let M S = {α, α → γ, β, θ, β ∧ γ ∧ θ → µ}, M R = {¬α, ¬β
∧ ¬γ, θ, ¬µ}, and M T = {¬α, β ∧ θ, µ}. Suppose the weights of M S , M R

and M T remain the same with Example 5.17.

Then EQmodel(MS) ≡ {+α, +β, +γ, +θ, +µ}, EQmodel(MR) ≡ {−α, −β,
−γ, +θ, −µ} and EQmodel(MT ) ≡ {−α, +β, +θ, +µ}. Hence we have relia-
bility(α, �) = 0.4/(0.4 + 0.2 +0.4) = 0.4, reliability(β, �) = (0.4 + 0.4)/(0.4
+ 0.2 + 0.4) = 0.8 and reliability(γ, �) = 0.4/(0.4 + 0.2) = 0.67, reliabil-
ity(θ, �) = 1 and reliability(µ, �) = 0.8. Therefore, belief (α) = ‘insecure’,
belief (β) = ‘uncertain’, belief (γ) = ‘uncertain’, belief (θ) = ‘secure’ and be-
lief (µ) = ‘uncertain’.

In this scenario, the message µ can be deduced by the transitivity constraint
mentioned above, though it is an implicit message in MS . Regardless of the
high reliability 0.8 on both β and µ, the belief in β and µ is still uncertain. The
high reliability of a message usually means that the inconsistency regarding
this message is low. In particular, MT does not support γ so its impact on the
reliability of γ is discarded.
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5.2.5 Experiments

We use some simulated transaction data to evaluate the inconsistency in secure
messages. The used data corresponds to the cash withdrawal transaction from
an Automated Teller Machine (ATM). When people make cash withdrawal
from an ATM, they need to have knowledge of the related PIN. The customer
places their card in the ATM slot and enters their PIN. Then the customer
inputs the amount requested for withdrawal. The host computer needs to
verify that the PIN is the proper one for that card. To ensure the amount
dispensed at the machine is identical to the amount debited from the account,
a sequence number is included on the response messages from host computer.
Moreover, the encryption by DES algorithm protects the PIN being exposed to
eavesdroppers who intercept the communications. It also protects PIN being
read by the personnel who gain access to the bank’s database.

Therefore, the transmitted messages in ATM transaction include PIN (en-
crypted PIN), Key(symmetric key), Acct(account number), Amount and SN
(Sequence number). There are three principals including host computer, ATM,
and the third party in this transaction, which are depicted as Mhost, MATM

and MT , respectively.

• Mhost = {PINhost, Keyhost, Accthost, Amounthost, SNhost, Weighthost}
• MATM ={PINATM KeyATM ,AcctATM ,AmountATM ,SNATM , WeightATM}
• MT = {PINT , KeyT , AcctT , AmountT , SNT , WeightT }
where each item is assigned with values of 1, 0 or null respectively. In partic-
ular, null value means that this item is empty in the set of messages. 1 and 0
represent two conflicting situations. For example, let PINhost = 1, if encrypted
PIN derived from ATM is not identical to the PIN in the host computer, then
we said PINATM = 0.

We have built an algorithm for measuring inconsistency in secure messages.
It consists of three modules, data reading, data transfer, reliability output and
belief output.

– the data reading is used to collect the transaction data from the principals;
– the data transfer assigns each secure message with 1, 0 or null as described

above;
– the reliability output quantifies the reliability of each message and gener-

ates the reliability table; and
– the belief output finally outputs the belief table in term of the generated

reliability table.

Then the measuring algorithm is described below.
Input: the data regarding the cash withdraw transaction from ATM, includ-
ing Mhost, MATM and MT .
Output: the reliability table and belief table.
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class data reading {
create Table M host (PIN, Key, Acct, Amount, SN )
create Table M ATM (PIN, Key, Acct, Amount, SN )
create Table M T (PIN, Key, Acct, Amount, SN )

record = executeQuery (select PIN, Key, Acct, Amount, SN
from database of Host, ATM and Third Party)
insert into M host, M ATM , M T values (record)

}

Table 5.1. Cash Withdraw from ATM

PIN Key Acct Amount SN Weight

host 1 1 1 1 1 0.4
ATM 1 0 0 0 null 0.3
T 1 null 0 1 1 0.3

class data transfer {
fieldhost = executeQuery (select PIN, Key, Acct, Amount, SN

from M host)
fieldATM = executeQuery (select PIN, Key, Acct, Amount, SN

from M ATM )
fieldT = executeQuery (select PIN, Key, Acct, Amount, SN

from M T )
Foreach field f in {PIN, Key, Acct, Amount, SN } do
{

if f ATM �= null then
{

if f ATM = f host then f ATM = 1
else f ATM = 0

}
if f T �= null then
{

if f T = f host then f T = 1
else f T = 0

}
if f host �= null then f host = 1

executeUpdate (update Mhost, MATM , Mhost set f host, f ATM ,
f T )
}
}
class reliability output {

executeUpdate (alert table M host, M ATM , M T ADD weight)
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Table 5.2. Reliability on ATM Transaction Data

PIN Key Acct Amount SN

reliabilityhost�ATM�T 1 0.57 0.4 0.7 1

fieldhost = executeQuery (select PIN, Key, Acct, Amount, SN,
weight from M host)

fieldATM = executeQuery (select PIN, Key, Acct, Amount, SN,
weight from M ATM )

fieldT = executeQuery (select PIN, Key, Acct, Amount, SN,
weight from M T )

Foreach field f in {PIN, Key, Acct, Amount, SN } do
{

S = {host, ATM, T}
reliabilityf = 0

Foreach i ∈ {host, ATM, T} do
{

if fi = null, then
S = {host, ATM, T} − {i}

}
Foreach i ∈ S do
{

reliabilityf = Sum (|fi| * weighti) / Sum ((|fi| + | − fi|) *
weight i) + reliabilityf

}
executeUpdate (insert into Mhost, MATM , Mhost

values(reliabilityf ))
}
}
class belief output {
Foreach field f in {PIN, Key, Acct, Amount, SN } do
{

if 0 ≤reliabilityf≤ 0.5 then
belief f = ‘insecure’

else
if 0.5 <fi< 1 then

belief f = ‘uncertain’
else

if fi =1 then
belief f =‘secure’

executeUpdate (insert into Mhost, MATM , Mhost values(belief f ))
}
}
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where the ATM, host computer and the third party should have the records of
the transmitted data. To measure the inconsistency between the principals, it
assumes that we are allowed to access the data. The obtained data is organized
as the forms in Table 5.1.

Then, we can compute the reliability for each item, which is depicted in
Table 5.2, in terms of the data derived from Table 5.1 and the function given
in Definition 5.11.

Table 5.3. Belief in ATM Transaction Data

PIN Key Acct Amount SN

reliabilityhost�ATM�T 1 0.57 0.4 0.7 1
beliefhost�ATM�T secure uncertain insecure uncertain secure

In Table 5.2, the reliability of encrypted PIN is 1, which indicates this item
is reliable. Moreover, the reliability of null value (empty) is zero according to
Definition 5.11. On the other hand, if the value of reliability on a message is
bigger, then we can say the inconsistency of this message is lower and vice
versa. This provides us an intuitive way to measure the inconsistency in secure
messages.

Finally, the belief of secure messages is presented in Table 5.3 according
to the given reliability in Table 5.2 and the discriminant function given in
Definition 5.12.

According to the derived belief table, we can identify the uncertain mes-
sages from the secure and insecure messages, which are unreliable and need to
be further validated. The results assist in guaranteeing the trust on the goal
that can be put on the protocol.

5.3 Integration of Conflicting Beliefs in Secure Messages

The rapid growth of e-commerce (electronic commerce) on Internet brings
out much important transaction information exchanged between principals.
A number of messages are shared by more than one principal, whereas they
may have inconsistent beliefs in these messages due to a hostile/uncertain
environment. This discrepant belief may prevent us from representing the in-
security and uncertainty in a real trading situation. Most of existing formal
analysis for security protocols however does not provide a way to handle the
inconsistent beliefs in secure messages. This chapter thus proposes a numerical
estimation to measure the inconsistent belief. It uses a probabilistic method
that intuitively measures the belief from different principals based on a mini-
mum trust that can be put on the goal of the protocol. We intend to merge the
inconsistent beliefs by a weighted majority criteria. In addition, we present a
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probabilistic semantics in combination with ENDL logic and apply the results
to the protocol analysis.

5.3.1 Related Work

Recently, security protocols have played an important role in generating, de-
livering, encrypting and authenticating secure messages, and achieving secu-
rity in distributed environment. A variety of formal methods and tools have
been developed to analyse these protocols and uncover subtle flaws [22, 120].
The formal analysis assists in improving the performance of the proto-
col [22, 29, 62].

Usually, the above methods are classified into two groups in terms of their
different purposes [24]: (1) is the group of approaches based on the belief of the
principals [22], while (2) is the group of approaches based on the knowledge
adversary. The former is used to evaluate the trust that can be put on the goal
by the legitimate communicants using the beliefs of the principals [62, 131].
The latter analyses the security of a protocol by examining the knowledge
gained by an intruder in the course of the protocol [117]. Although most of
the impressive progress in protocol analysis has occurred in group (2), this
still remained a fairly esoteric area until the publication of BAN logic [22].
That is why we will be focusing on the methods in (1).

The approaches in the first group regard the evolution of the beliefs of
principals engaged in a protocol as a consequence of the protocol exchange.
The verification usually starts from formalizing a set of exchanged messages,
applying the inference rules, and then deducing the stated goal of the protocol.
They aim at presenting how to start the initial set of beliefs, apply a set of
inference rules, and finally achieve the main goals of the protocols can be
deduced. They provide short, clear and formal proofs of these goals and detect
flaws in security protocols. ENDL logic [29] is in this group and is especially
designed for the verification of electronic transaction protocols.

In the previous protocol analysis, the communication channel and princi-
pals are ideally assumed to be secure and trustworthy. However, in a hostile
and/or uncertain environment, the beliefs of principals and transmitted mes-
sages can no longer be justified. For example, a customer wants to order a gift
valued at $20 but the merchant may receive a tampered order valued at $50
from an intruder. In other words, the principals may have inconsistent beliefs
in secure messages. Then, it is necessary to have the capability of modelling
the imperfect working conditions and verifying the protocol under such cir-
cumstances. Recently, the uncertainty and partial belief have attracted much
attentions in developing methods [24, 106]. Many different formalisms and
methodologies have been proposed for handling uncertain knowledge. Most of
them are directly or indirectly based on probability theory. However, none of
them have touched upon the key issue of measuring the inconsistent beliefs in
secure messages.
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The study of the connections between probability and logic has a long his-
tory, such as a new probabilistic method to deal with uncertainty and partial
belief [51]. In [66], they discussed two useful and quite different ways of un-
derstanding belief functions that consist of a generalized probability function
and a way of representing evidence. Campbell, Safavi-Naini, and Pleasants [24]
presented an extension of BAN logic to reason about a secure protocol by at-
taching the probabilities to the corresponding statements in the logic and to
calculate a measure of trust in the goal of a protocol, which quantifies the
beliefs of principals. It puts emphasis upon the beliefs of principals. However,
the required inexact reasoning is computationally expensive. This method can
have difficulty to analyse finance protocols due to its lack of semantics, such
as freshness. They do not discuss how to integrate the inconsistent beliefs
between principals. Thus, it requires us to extend or adapt current methods
to deal with the inconsistent belief, offer a numeric estimation to the belief
and enhance the formal proof of the protocol.

In recent years, many formalisms have been put forward in the litera-
tures to cope with the inconsistent messages of knowledge bases. Liberatore
and Schaerf gave a merging process arbitration to merge the different views
between different sources of information and investigates the properties any
arbitration operator should satisfy [93]. It intends to preserve as much in-
formation as possible after merging; Lin and Mendelzon defined a merging
operator by majority in contrast with arbitration to merge knowledge base
in [96], and gave formal semantics for merging multiple knowledge bases with
weights by using the method of Dalal [39] in [95]; Konieczny and Pino Perez
considered the problem of merging several belief bases in the presence of in-
tegrity constrains [89], and explored the frontier between merging operator
and arbitration operator in [90]; Hunter presented a framework for evaluating
the significance of inconsistencies in [72]. The above work is a good foundation
to handle conflicting secure messages.

From the above observations, (1) most of the current work focuses on
the uncertainty of belief rather than measuring the inconsistent beliefs in
secure messages; (2) the traditional methods to deal with uncertain belief
using probability however have not taken into account the properties of secure
messages.

In an open and distributed environment, the participants may have incon-
sistent, even conflicting belief in secure messages. In addition, the beliefs are
not permanent but just valid within the period of validity. The traditional
logics for protocol analysis cannot deal with the belief in secure messages and
intuitively measure the trust in the goal of the protocol. Therefore, it is nec-
essary to develop a novel method to measure the partially conflicting belief in
secure messages to ensure correct protocol analysis.

This section aims in handling partially conflicting beliefs in secure mes-
sages and enhancing the formal proof of security protocols.
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5.3.2 Basic Concepts

In this section, we describe some technical preliminaries. We first present the
relationship between probability and formal proof. And then we present the
semantics definition of the formal framework.

Formal logic, probability and belief. Some recent work of probabilistic
logic can be found in [24, 51]. We will be concerned here with the probability
assigned to a set of assumptions and inference rules and relate them to the
probability of conclusions that can be derived from them. These probabilities
are useful to express less than certain assumptions and rules in the formal
proof of the correctness of protocols. Furthermore, this helps deal with par-
tially conflicting belief in secure messages and correctly measure the trust that
can be put on the goal of the protocol.

A formal logic used to verify security protocols includes a collection of
sentences and inference rules. For example, ‘knows (Alice, k)’ and ‘sends(Alice,
Bob, m)’ are sentences. The sentences are formed in terms of the syntax
of the logic. It generates meaningful statements according to its semantics.
An inference rule actually indicates the relationship between a collection of
sentences.

Let S be the set of sentences in the formal logic and S+ be the closure of
S which represents the set of whole sentences derived from the S by applying
the rules of the logic. A set of rules R can be defined as the form of a1, a2, . . .,
an ⇒ c, which includes the sentence c ∈ S+ in conjunction with the sentences
a1, a2, . . ., an. Let s1, s2, . . ., sk be a proof of a sentence c, in which each si (1
≤ si ≤ k) can be an axiom or is inferred from available sentences in sequence
by a rule instance in R.

A sentence φ can be true or false. We can imagine two sets of possible
worlds W1 and W2. W1 contains worlds in which φ is true and W2 contains
worlds where φ is false. The actual world, however, must be in one of these
two sets, but we might not know which one. As a result, we need to model
this less than certain situations using probability.

Let B = S ∪ R. Define the probability space (W , F , P) for B, in which
the sample space W is a nonempty set and is known as outcomes, the events
F denote sets of outcomes, and the probability measure P is a function that
assigns to each event a probability between 0 and 1. Consequently, for each
w ∈ W , there is a truth assignment a �→ w(a) = 0 or 1 defined on B, the
probability of a ∈ B by

p(a) = p ({w : w(a) = 1}).
Let c be any conclusions that can be inferred from B. We can extend the truth
assignment to c by defining w(c) = 1 only if there is a proof of c from B. In
other words, we have w(a) = 1 for each sentence or inference rule a used in
this proof. The probability of a conclusion c ∈ A can then be defined by
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p(c) = p ({w : w(c) = 1}).
The set W actually represents the state of the world. In each state, some of
the sentences in S and inference rules are valid. The probability P describes
the degree of belief in the conclusions. The probability of a conclusion c can
be defined as the probability that the proof of c from B is valid. It actually
depends on the probabilities that the assumptions and rules are trustworthy.
Ideally, they were assumed to be certain in the previous formal proof of pro-
tocols. However, the hostile/uncertain environments can result in inconsistent
beliefs in secure messages. Therefore, it is necessary to attach probabilities to
rules to model such insecure environments.

Let P be a principal, let M P be a set of secure messages known by P
and let M = {MP1 , MP2 , . . ., MPn}. It is possible that two principals P i and
P j can share some messages with each other. Usually, a weight is assigned
to each principal in terms of its priorities. If a principal has a higher weight,
more his/her opinion will be reflected in measuring the belief.

It is observed that the belief in a goal c depends on the assumed belief
(weight), observed belief and the probability of the rule. In particular, there
might be more than one rule that can be used to verify a goal of the protocol.
In that case, we may have to examine whether the rules have an intersection
of conditions. If so, more complicated probability computation is required,
otherwise they will be viewed as independent rules. Note that the sender does
not need to use inference rules to authenticate c. The details of measuring the
belief can be seen in the next section.

The derived inconsistent beliefs prevent the user from deciding the trust in
the goal of the protocol correctly. Therefore, it is critical to merge the beliefs,
and ensure the correctness of the formal proof of the protocol.

Semantic definition. A principal is a main participant in a protocol. A
set of secure messages M is a finite set of sentences. We say M supports a
sentence α if M implies α and trusts it (i.e., M |=support α), and M opposes
α if M implies ¬α (M |=support ¬α) and distrusts it.

Suppose P1, P2, · · · , Pn (n ≥ 1) are the principals to be involved in
the protocol and � is a function that assigns each of the principals a non-
negative number representing the weight of the principal. The weight function
� is intended to capture the relative degree of importance of the principals.
If �(P i) is higher, P i is more important within the group of principals, and
we want more of its knowledge to be reflected in the result of trust in the
goal of the protocol. The smallest number that can be assigned to a principal
is zero. Intuitively, if a principal is assigned a zero weight then its opinion is
discarded while measuring the belief.

A message may be encrypted in a number of ways, such as encrypted by a
symmetric key; a private/public key. In particular, the encryption may include
additional components such as the hashing of a message m and a timestamp.
Moreover, we have the following constructs defined in [29]:
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• <m1, · · · , mn> represents the combination of a set of messages, including
m1, · · · , mn.

• sends(X, Y, m) represents the messages m was sent from principal X to
principal Y.

• knows(X, m) represents principal X knows the message m.
• sees(X, m) represents principal X receives the message m.
• fresh(m) represents the message m is fresh.
• believes(X, Y, m) represents principal X believes the message m is fresh

and really from Y.
• authenticates(X, Y, m) represents principal X believes that the message

from principal Y is authentic.
• {m}K represents the message m is encrypted using the key K.
• KXY represents the key K is shared between principal X and principal Y.

Example 5.19. Suppose m, m1 and m2 are messages and X 1 and X 2 are prin-
cipals. <m1, m2> denotes the concatenation of m1 and m2; “sends(X 1, X 2,
m)” denotes the message m was sent from X 1 to X 2; “knows(X 1, m)” de-
notes m is known by X 1; “sees(X 2, m)” represents principal X 2 receives
message m; “fresh(m)” represents m is fresh and not a replay of previous
messages; “believes(X 1, X 2, m)” represents X 1 believes that the message
m is fresh and really from X 2; “authenticates(X 1, X 2, m)” represents X 1

believes that the message m from X 2 is reliable; KX1X2 represents the key K
is shared by X 1 and X 2.

As the symbols describe, the checking of a message authenticity could be
viewed as the combination of a series of constructs, such as ‘believes ’, ‘fresh’,
‘see’. In [22], they make a realistic assumption that each principal can recog-
nize and ignore his own messages; the originator of each message is included
for this purpose. However, this cannot exclude the possibility that different
principals may have inconsistent beliefs in the message. Unfortunately, this
less than certain assumptions and inference rules below cannot be represented
by the operational semantics of ENDL logic. Thus, its semantics need to be
extended. The details can be seen below.

In general, facts are stated in the form of expressions called sentences, or
sometimes well-formed formulae. We define that an atomic sentence is formed
from a n-ary relation operator mentioned above and n atom symbols a1, a2,
. . ., an, by combining them as follows.

r (a1, a2, . . ., an)

We do not consider the atomic sentences involving mathematical relations due
to the freshness and dynamics properties of secure messages.

Example 5.20. “knows(Alice, <m1, m2, . . ., mn>)” and “sends(Alice, Bob,
<m1, m2, . . ., mn>)” are both atomic sentences. “fresh(m)” is viewed as an
atomic sentence as well.



162 5 Uncertainty Issues in Secure Messages

We also want to express facts that cannot be conveniently expressed by atomic
sentences. The atomic sentences can logically be combined by logical opera-
tors.

Suppose S 1 and S 2 are two atomic sentences. A negation is formed using
the ¬ operator, such as ¬S 1 and ¬S 2. A conjunction is a set of sentences
connected by the ∧ operator, such as S 1 ∧ S 2. A disjunction sentences is a
set of sentences connected by the ∨ operator, such as S 1 ∨ S 2. An implication
is formed using the → operator, such as S 1 → S 2. In particular, an existen-
tially quantified sentence is formed by combing the existential quantifier ∃,
a variable ν, and any simpler sentence ψ. The intended meaning is that the
sentence ψ is true, for at least one object in the universe of disclosure.

The semantics of ENDL can be extended to allow for uncertain assump-
tions and inference rules in the proof of the correctness of the protocol. Accord-
ing to existing operational semantics of ENDL, principals have some initial
beliefs when starting the protocol and trust which evolve in the course of the
protocol in terms of certain rules. These rules are abstraction of inference
processes and assist in determining the final beliefs of the principals.

Sentences in the ENDL can generate various statements. The first type
of sentences is the atomic sentence described above such as the sends() and
sees(). It shows what knowledge are available to the principals within a trans-
action. In [24], these sentences are assigned a generalised truth value 1 in all
possible states. However, the messages may not be always consistent in all
states but can be missing or tampered in a hostile environment. For example,
a customer may send a $10 order for a flash disk, but the merchant sees $20
order instead. It is unreasonable to continuously assign a truth value 1 to
the sentences since the principals have inconsistent beliefs in them. In this
chapter, we use the support of sentences as the truth value. The details can
be seen in Section 5.3.3

The second type of sentences include the axioms of ENDL, which repre-
sent the basic entailment relation with respect to encryption, decryption, key
allocation, signature and authentication. For example, the principal P should
know its own private key. The sentences below present the fundamental en-
tailment relations of ENDL.

(1) 	 knows(P, m) → sends(P, Q, m).
It means that if the principal P knows m, then P can sends m to another

principal Q.
(2) 	 sends(P, Q, m) → sees(Q, m)
It means that if P sends m to Q, then Q will see m.
As a consequence, we can conclude knows(P, m) ∧ (	 knows(P, m) →

sends(P, Q, m)) ∧ (	 sends(P, Q, m) → sees(Q, m)) ⇒ sees(Q, m).

We will assign the generalised truth value 1 to similar sentences since they
have been proved to be true.
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In ENDL logic [29], sends, knows, sees and fresh are primitive operators.
They can be represented as a compact form, namely rules.

	 knows(P, m) × sends(P, Q, m)× fresh(m) × sees(Q, m) ⇒ be-
lieves(Q, P, m)

where the principal P generates the message m and then sends it to the
principal Q. If Q receives this message and confirms that it is fresh, it is
reasonable for principal Q to believe the message m from P. However, it does
not imply that principal Q believes the integrity and confidentiality of m.
They need to be further verified according to the inference rules below.

There are three main rules in ENDL that are involved in the authentication
of messages. They are derived from the authentication axioms of ENDL and
have been proved to be true.

(1) 	 knows(X, m) × knows(X, S (<IDY , T, H (m)>, Spv(Y ))) × knows(X,
Spb(Y )) ⇒ authenticates(X, Y, m).

(2) 	 knows(X, m) × authenticates(X, Y, H (m)) ⇒ authenticates(X, Y, m).
(3) 	 knows(X, Spb(Y )) × knows(X, S (<IDY , T, Spb(Y )>, Spv(CA))) ×

knows(X, Spb(CA)) ⇒ authenticates(X, Y, Spb(Y )).

where IDY is Y ’s identity; T is the timestamp; H (m) is the hashing of message
m; and Spv(Y ) and Spb(Y ) represent Y ’s private and public signature key,
respectively. The definition and use of timestamp can be found in [40].

Inference rules of ENDL play an important role in generating new beliefs
according to the existing beliefs of principals and their available messages
during the transaction. The probability that a rule holds can be defined as
the probability that given that the beliefs of the conditions of the rule are true,
then the belief of the conclusion of the rule is also true. Thus, it is viewed as
a conditional probability of the observed belief of the principal.

The aforementioned inconsistent beliefs increase the complexity because
we have to consider all potential factors that may have an effect on measuring
the beliefs. Moreover, there are many situations in which humans possess and
reason with uncertain belief and allow for degrees of certainty in the truth
of a proposition. To extend the apparatus of first-order logic to permit the
use of probability theory in reasoning about uncertain statements, we must
connect the idea of a sentence in logic with the idea of a random variable in
probability theory.

Let M P = {m1, m2, . . ., mn} be a collection of secure message of principal
P. Each message may be shared by more than one principal simultaneously
since it might be transmitted between principals in a trading process. Usually,
we classify the messages into three categories MS , MR and MT , respectively,.
These actually represent the messages recorded in corresponding principal’s
computer system. Ideally, it assumes that the principals should have equal
weight to a given message.
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Definition 5.13. Let |=support be a supporting relationship. For a set of secure
message M, M |=support is defined as follows, where α is an atom in A, and
each of them virtually denotes a message.

⎧

⎨

⎩

MS |=support α iff ‘knows(S, α)’ ∧ ‘ fresh(α)’
MR |=support α iff ‘believes(R, S, α)’ ∧ ‘ fresh(α)’
MT |=support α iff ‘believes(T, S, α)’ ∧ ‘ fresh(α)’

where MS , MR and MT denote the set of messages of sender, receiver and
the third party, respectively. In particular, “α is fresh” in these formulae is
decided by using T < Texpiration. On the other hand, R and T need to check
the freshness of α by using |Clock−T| < �t1 + �t2 when they receive α from
the sender [40]. These will guarantee the message α is not a replay and is
really from the the expected principal.

Definition 5.14. Suppose β1, . . ., βn (n ≥ 1) are secure messages. M ∈ {MS,
MR, MT }. Let β1 ∧ . . . ∧ βn be a conjunction, which is a set of secure messages
connected by the ∧ operator.

M |=support β1 ∧ . . . ∧ M |=support βn iff M |=support β1 ∧ . . . ∧ βn

This means that, if M supports every message βi, 1 ≤ i ≤ n, then M should
support the conjunction of these messages connected by the ∧ operator and
vice versa.

The supporting relation considers the dynamics property of secure message
by using the knows and sees operators. Furthermore, the freshness of secure
message is ensured by the timestamp.

Definition 5.15. Let |=match be a matching relationship. For a set of secure
messages M, M |=match is defined as follows, where R is a set of rules used to
authenticate messages.

{

MR |=match r iff ‘∃ MR
′ ⊆ MR, ∃ r ∈ R’ and ‘MR

′ matches r’
MT |=match r iff ‘∃ MT

′ ⊆ MT , ∃ r ∈ R’ and ‘MT
′ matches r’

where the principal intends to find messages required to match the rule. If
there is an inference rule that can be satisfied by the obtained messages, it is
true; otherwise false. S is the initiator of the message. Therefore he/she just
verifies the message m in terms of the supporting relation defined above but
does not need to match the inference rules.

Definition 5.16. Let |=auth be a belief relationship. For a set of secure mes-
sage M, M |=auth m is defined as follows, where m is a message needed to be
authenticated.

⎧

⎨

⎩

MS |=auth m iff ‘MS |=support m’
MR |=auth m iff ‘MR |=support m’ and ‘∃r∈ R, MR |=match r’
MT |=auth m iff ‘MT |=support m’ and ‘∃r∈ R, MT |=match r’
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where the supporting relation is the starting point, from which the principals
can go ahead to match the rules mentioned above. If a rule is satisfied we can
say the authenticated message m is reliable; otherwise unreliable.

The |=support, |=match and |=auth actually represent the transformation
of beliefs during the authentication process of messages. They all assist in
authenticating the message and will be operated in order during the authen-
tication.

Similarly, the above supporting relationships can satisfy some constraints.
The details can be seen in Section 5.2.2

5.3.3 Handling Inconsistent Beliefs in Secure Messages

Belief in secure messages. Usually, multi-Agent systems or heterogeneous
database are natural environment for the occurrence of inconsistent beliefs.
In particular, principals often have contradictory beliefs in secure messages in
a hostile/uncertain environment. We are interested in the general case when
their individual belief assignment to messages is inconsistent; and we are in-
terested in finding an intuitive way to measure the trust that can be put on
the goal of the protocol.

Belief is referred as a principal’s view of secure messages, which can be
introduced directly or inferred through perception, assumption or communi-
cation between principals rather than an individual.

A belief bel in secure message m from principal P is represented by a tuple

<m, belP , E(belP ), F(belP ), P>

where m is a secure message, belP identifies the belief, E(belP) specifies how the
inferred belief is derived (assumed, observed, and probability of the belief of
inference rules), F(belP ) is the set of foundations that support the belief, and
P identifies the principal of the belief, including S, R and T. The belief status
is established in terms of the F(belP ). If F(belP ) = ∅, then m is disbelieved;
otherwise, if F(belP ) �= ∅, the belief status of m is uncertain.

The assumed belief is a form of subjective assignment of probability. How-
ever, it is necessary to take into account the objective assignment, including
the observed belief and the belief transmission when using inference rules, to
evaluate the performance of the protocol correctly. In the following sections,
we attempt to measure the beliefs and merge them.

Quality of support using minimal QC model. In this section, we will
define and discuss QC minimal model of a collection of messages of principals,
and measure the observed belief of principals.

QC [71] logic is motivated by the need to deal with belief. The definition
of QC model can be seen in Section 5.2.3.

To measure the inconsistency, the minimal QC model (MQC) is often used.
A minimal QC model of M (a collection of secure messages) is a QC model
X of M such that for every subset Y ⊂ X, Y /∈ QC(X ).
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We can use an example to illustrate how to generate minimal QC model.

Example 5.21. Suppose M 1 = {α, β ∨ γ} and M 2 = {α ∨ β, ¬α ∨ γ}. We
have

MQC(M 1) = {{+α, +β}, {+α, +γ}}
MQC(M 2) = {{+α, +γ}, {−α, +β}, {+β, +γ}}

In this example, M 1 has two MQCs, and M 2 has three MQCs. Thus, we
may obtain multiple results when calculating the support of principals for a
sentence by using different MQCs. In that case, their mean is calculated.

Definition 5.17. Let M be a set of secure messages and let X be a MQC of
M. The support function from A to [0, 1] is defined below when α is not empty,
and supp(M, ∅) = 0.

supp(X,α) =
|+ α|

|+ α ∪ −α| × 100 (5.1)

where supp(X, α) is the total number of α supported by the minimal QC
model X of M and |α| is the number of occurrence of the set of α in X. If
supp(X, α) = 0, then we can say X has no opinion upon α and vice versa;
if supp(X, α) = 1, it indicates that there is no negative object −α in X ; if
supp(X, α) = c, 0<c<1, it represents α is partially supported by X.

The above definition actually provides a function to calculate the degree
that a MQC model supports α. The support between α and M is defined
below.

Definition 5.18. Suppose X1, X2, · · · , Xk are all MQC models of M. The
support between M and a sentence α is defined as the mean of all supp(Xi,
α).

supp(M,α) =
k

∑

i=1

supp(Xi, α)/k (5.2)

where some models may not support α. In particular, if supp(M, α) = 0, it
indicates that α is not supported by M at all.

Note, we must check whether α is fresh or not like Definition 5.2. If α may
be identified as a replay, it will be reported to the user, rather than calculating
the support.

The obtained support represents the observed belief. To decide the trust
in the goal, we need to consider the weight of principals and the probability
of inference rules together.

Measuring inconsistent beliefs. A numeric estimation is defined below
to measure the inconsistent beliefs in secure messages.

In this chapter, we aim to derive the reliability of statement “X authenti-
cates Y, m”, namely that in X ’s view the message m sent from Y is authentic,
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in which the message m can be a plain text, cipher text or encryption key,
and so on. The satisfiable conditions of secure messages can be seen in Defi-
nition 5.3.

Definition 5.19. Let m be the authenticated goal, let BelP (m) be the belief
of the principal P in m, P ∈ {S. R, T} and let pR(r) be the probability of
rules that can be used by P to authenticate m. The belief of principals in a
statement m can be defined as follows.

⎧

⎨

⎩

BelS(m) = supp(MS, m) ∗ �S

BelR(m) = pR( r) ∗ �R

BelT (m) = pT ( r) ∗ �T

where �S , �R and �T represent the assumed belief of the sender, receiver
and the third party, respectively; as mentioned above, the sender does not
need to use inference rule to authenticate m, so only the assumed belief and
observed belief (supp(M S , m)) are considered here; the probabilities of pR(r)
and pT (r) are actually based on the observed beliefs of the receiver and the
third party. The details can be seen in the following contents.

There have been a lot of methods that were used to identify the weight of
principals. It is usually depended on the specified criteria. For example, three
criteria ‘past experiences ’, ‘background relevance’ and ‘relevant credits ’ are
adopted for computing the weight of each principal. We need to synthetically
consider the important ratios of the criteria and the evaluation results of the
criteria for all principals. Nevertheless, it is not an emphasis to discuss how
to calculate the weight of each principal here.

Until now, we have not referred closely to how the probability of the in-
ference rules is specified. To authenticate a message m, the user has to check
whether the held messages match at least one of the known rules. Sometimes,
it is possible that there are more than one rule that can be satisfied.

Let r1, r2, · · · , rn be a set of available inference rules. In general, sup-
pose PathP represents a subset of rules that are used to authenticate the
statement m.

Example 5.22. Consider a process of authentication shown in Figure 5.1. R
can authenticate statement m by using two paths including rule1 and rule2.
Nevertheless, M T verifies m by using rule3 only. More generally, we have

PathR = {rule1, rule2} and PathT = {rule3}.
If an authentication includes one path only, it is simple to compute the prob-
ability of the rule by using conditional probability. However, if there are mul-
tiple paths, it is necessary to use the probabilistic model to describe the prob-
ability of each way.

Let S be a set of sentences (such as the forms ‘X knows m’, ‘X knows
Spb(Y )’ etc.) that the user considers as available knowledge for authentica-
tion. In particular, S may imply several inference rules, which can be used
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Fig. 5.1. Authentication Path

for the authentication. The sample space of the random experiment (i.e., the
set of possible worlds considered by the user) is the power set of S, denoted
by 2S . P : 2S → R

+ is a probability function on the sample space 2S , which
indicates a probability measure for all events (i.e., set of subsets of S).

Suppose A = {A1, . . ., An} denotes the conditions of r : A1 × . . . × An ⇒
B. As described above, the probability of a rule, namely p(r), is a conditional
probability based on the conditions. The conditions are independent with each
other since they represent independent sentences. We have

p(r) = p(B|A1A2 · · ·An)

= p(AB)/p(A)

= p(AB)/
n

∏

i=1

p(Ai)

where p(Ai) > 0 and p(B) can be measured by using the support defined in
Definition 5.6. Note, p(r) = 0 if ∃ p(Ai) = 0.

Furthermore, we have p(A) + p(B) − 1 ≤ p(AB)≤ p(B) according to
probability theorem. Consequently, we can obtain a probability interval re-
garding the rule. The minimum is selected as its probability to calculate the
belief, namely

{

if
∏n

i=1 p(Ai) �= 0, (p(A) + p(B)− 1)/
∏n

i=1 p(Ai)
0 otherwise

(5.3)

Example 5.23. Figure 5.2 presents an inference rules. It consists of conditions
pre1, · · · , pren. They are represented and connected by using edges. The
number above each edge indicates the user’s support on each sentence prei.

On the other hand, there might be more than one path that the user can use
to authenticate the specified statement. For example, in Figure 5.1, two rules
including rule1 and rule2 can be applied to authenticate the statement m.

Definition 5.20. Let ri: Ai1 × . . . × Ain ⇒ ci and rj: Aj1 × . . . × Ajk ⇒
cj be two inference rules, i �= j. The ri is said to be independent of rj if {Ai1,
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Fig. 5.2. The Assigned Values of Premises of Rule

. . ., Ain} ∩ {Aj1, . . ., Ajk} = ∅; otherwise they are said to be dependent. We
have

(1) p(ri ∪ rj)= p(ri) + p(rj), if r i is independent of r j ;
(2) p(ri ∪ rj) = p(ri) + p(rj) − p(ri) * p(rj), if r i and r j are dependent with

each other.

Example 5.24. Suppose r1: ‘X knows m’ × ‘X knows Y ’s digital signature
on m’ × ‘X knows Y ’s public signature key’ ⇒ ‘X authenticates Y, m’ and
r2: ‘X knows m’ × ‘X authenticates Y, H (m)’ ⇒ ‘X authenticates Y, m’
are two rules, which can be used to authenticate the statement m. r1 is not
independent of r2 because they have a common condition ‘X knows m’.

Possibly, there are more than two rules used to authenticate a statement.
In this extreme case, according to the inclusion-exclusion principle [106], the
probability of the union of multiple rules can be computed by using the ad-
dition formula of probability theorem. Suppose n rules including r1, · · · , rn

are used in the authentication. This gives

P (
n
⋃

i=1

ri) = s1 − s2 + s3 + · · ·+ (−1)n+1sn

where s1 =
∑n

i=1 P (ri), s2 =
∑

1≤i<j≤n P (rirj), s3 =
∑

1≤i<j<k≤n P (rirjrk),
· · · , sn = P(r ir j · · · rn).

Although an authentication can include a number of rules in theory, we
consider three rules only for the sake of brevity.

Suppose {rR1, · · · , rRk} and {rT1, · · · , rTl} are two set of rules used to
validate m by the receiver R and the third party T, respectively. Therefore,
the probability of rules in Definition 5.20 can be defined as.

pR(r) = p(
k
⋃

i=1

rRi) (5.4)

pT (r) = p(
l

⋃

i=1

rTi) (5.5)

Based on the obtained assumed belief, the observed belief and the probability
of rules, we are then able to compute the trust that can be put on the goal of
the protocol.
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Merging inconsistent beliefs. It is observed that the principals might
obtain inconsistent trust in the authenticated goal m. Certainly, this has a
negative impact on evaluating the correctness of the protocol. Thus, such
individual beliefs have to be merged to generate a commonly acceptable trust
in the goal. In reality, it may be infeasible to require that all principals have
high and consistent trust. Therefore, it is reasonable to use a tradeoff by
majority criterion. In other words, a statement m is believe to be secure as
long as the majority of the principals believe m is secure. We intend to merge
the inconsistent beliefs according to the quantities of trust in the specified
goal.

Refer to the strict weighted majority mentioned in [95], the combined
weight of the support for m should be over 50% of the total weight. Let η be
the threshold of weight. We have

η =
∑

P∈{S,R,T}
�P /2 (5.6)

According to Definition 5.19, we can work out the sum of the belief of the
sender, receiver and the third party with respect to m. We have

Bel(m) = BelS(m) +BelR(m) +BelT (m) (5.7)

Based on the threshold η of weight and the sum of belief on the statement
m, the user is able to determine whether m is secure or not by merging their
inconsistent beliefs together.

{

if Bel(m) ≥ η, m is believed to secure by the user
otherwise m is insecure

The proposed merging operator provides a useful way to deal with inconsistent
beliefs and complement the formal proof of security protocols.

5.3.4 Experiments

We now look at experiments of dealing with inconsistent belief in secure mes-
sages. For the reason of brevity, it assumes that all the messages transmitted
between principals are fresh and the principals are trustworthy. Also, the mes-
sages are assumed to be generated and sent by the sender and received and
seen by whom it claims to be. The sentences may express plaintext, encrypted
messages, symmetric key, signature key or something like that. Two experi-
ments are presented below to illustrate the proposed method.

Experiment 1. Suppose M S = {α, β, φ, θ, α ∧ β ∧ θ → γ, δ}, M R = {¬α,
φ, ¬γ, φ ∧ ¬γ → ¬θ, ¬δ}, and M T = {α, β, φ, θ, γ, δ}. Let α ≡ ‘message
m’, β ≡ ‘the sender’s private signature key Spv(S )’, φ ≡ ‘the sender’s public
signature key Spb(S )’, θ ≡ ‘the sender’s identity IDS ’, γ ≡ ‘the sender’s digital
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signature S (<IDS, T, H (m)>, Spv(S ))’ and δ = ‘authenticated m’. Let α
′ ≡

‘A knows α’, φ
′ ≡ ‘A knows φ’, γ

′ ≡ ‘A knows γ’ be statements, which are
three conditions of the inference rule r : α

′ × φ
′ × γ

′ ⇒ δ. Let the weight of
S, R and T be �S = �R = 0.6 and �T = 0.8, respectively.

To generate the observed belief, we first need to transfer the messages
known by the principals into models. According to the the definition of mini-
mal QC model, we have MQC (MS) ≡ MQC (MT ) ≡ {+α, +β, +θ, +φ, +γ,
+δ} and MQC (MR) ≡ {¬α, +φ, ¬θ, ¬γ, ¬δ}. Thus, we can calculate the
support of the sentences. We just illustrate the authentication of α below and
the authentication of remaining sentences is left to readers.

M S , M R and M T all have one model only. Based on the Definition 5.17
and 5.18, we have supp(M S , α) = supp(M T , α) = 1, supp(M R, α) = 0,
supp(M S , φ) = supp(M T , φ) = supp(M R, φ) = 1, supp(M S , γ) = supp(M T ,
γ) = 1, supp(M R, γ) = 0, supp(M S , δ) = supp(M T , δ) = 1, supp(M R, δ) =
0. It is observed that S, R and T have inconsistent belief in α. In addition
to the specified weight (assumed belief) and the support(observed belief), the
probability of rules must be included to determine the final belief.

As a result, BelS(m) = supp(M S , α) ∗ �S = 0.6 since the sender does
not need to use inference rules to authenticate α. According to the formula
(5.3), (5.4) and (5.5), we have

BelR(m) =
supp(MR, α) ∗ supp(MR, φ) ∗ supp(MR, γ) + supp(MR, δ)− 1

supp(MR, α) ∗ supp(MR, φ) ∗ supp(MR, γ)
∗�R

= 0

BelT (m) =
supp(MT , α) ∗ supp(MT , β) ∗ supp(MT , γ) + supp(MT , δ)− 1

supp(MT , α) ∗ supp(MT , β) ∗ supp(MT , γ)
∗�T

= 0.8

Thus, we obtain Bel(m) = BelS(m) + BelR(m) + BelT (m) = 1.4 in terms
of the formula (5.7).

From the formula (6.6), the 50 percent of the weight η = (0.6 + 0.6 +
0.8)/2 = 1 < Bel(m). Therefore, m is believed to be secure in this transaction
using the protocol.

Experiment 2. Suppose the meaning of α, β, γ, θ, φ, α
′
, β

′
and γ

′
keep the

same as the Experiment 1. M S = {α, ¬α, β, ϕ, φ, θ, α ∧ β ∧ θ → γ, δ},
M R = {¬α, α, φ, ϕ, ¬γ, φ ∧ ¬γ → ¬θ, ¬δ} and M T = {α, β, φ, ϕ, θ, γ, δ}.
Let ϕ ≡ ‘the hashing of message m’ and ϕ

′ ≡ ‘A authenticates ϕ’. Let �S =
�R = 0.4 and �T = 0.9.

There are two rules that can be used to authenticate α in this experiment.
The user can use not only the rule mentioned in the last experiment r1:
α

′ × β
′ × γ

′ ⇒ ‘A authenticates α’, but also another rule r2: α
′ × ϕ

′ ⇒
‘A authenticates α’. It is noted that there is an intersection between the
conditions {α′

, β
′
, γ

′} of r1 and the conditions {α′
, ϕ

′} of r2, namely {α′
, β

′
,



172 5 Uncertainty Issues in Secure Messages

γ
′} ∩ {α′

, ϕ
′} = α

′
. On the other hand, the weights of sender and receiver

are down but the weight of the third party is up. Thus, more of the third
party’s opinion will be reflected in determining the final belief in m. Actually,
it is usually reasonable to put more trust on the third party like trust center
or authority.

Similarly, we need to first generate the models of M S , M R and M T . In
the same way, we can obtain MQC (MS) ≡ {+α, ¬α, +ϕ, +β, +θ, +φ, +γ,
+δ}, MQC (MT ) ≡ {+α, +β, +ϕ, +θ, +φ, +γ, +δ} and MQC (MR) ≡ {+α,
¬α, +ϕ, +φ, ¬θ, ¬γ, ¬δ}.

Thus, according to the formula (5.1), we have supp(M S , α) = supp(M R,
α) = 0.5, supp(M T , α) = 1, supp(M S , β) = supp(M T , β) = 1, supp(M R,
β) = 0, supp(M S , γ) = supp(M T , γ) = 1, supp(M R, γ) = 0, supp(M S ,
δ) = supp(M T , δ) = 1, supp(M R, δ) = 0, supp(M S , ϕ) = supp(M T , ϕ) =
supp(M R, ϕ) = 1. Unlike the Experiment 1, the supports for α vary in M S

and M R since they contain ¬α. Using the obtained support, we are able to
calculate the probabilities of rules.

In the similar manner, we have BelS(m) = supp(M S , α) ∗ �S = 0.5 ∗
0.4 = 0.2. There are two rules that can be used to authenticate α in this
experiment. According to the formula (5.3), (5.4) and (5.5), we have

pR(r1) =
supp(MR, α) ∗ supp(MR, β) ∗ supp(MR, γ) + supp(MR, δ)− 1

supp(MR, α) ∗ supp(MR, β) ∗ supp(MR, γ)
= 0

pR(r2) =
supp(MR, α) ∗ supp(MR, ϕ) + supp(MR, δ)− 1

supp(MR, α) ∗ supp(MR, ϕ)
= 1

pT (r1) =
supp(MT , α) ∗ supp(MT , β) ∗ supp(MT , γ) + supp(MT , δ)− 1

supp(MT , α) ∗ supp(MT , β) ∗ supp(MT , γ)
= 1

pT (r2) =
supp(MT , α) ∗ supp(MT , ϕ) + supp(MT , δ)− 1

supp(MT , α) ∗ supp(MT , ϕ)
= 1

Thus, pR(r) = pR(r1) + pR(r2) − pR(r1) ∗ pR(r2) = 0 + 1 − 0 = 1 and
pT (r) = pT (r1) + pT (r2) − pT (r1) ∗ pT (r2) = 1 + 1 − 1 = 1

We have BelR(m) = pR(r) ∗ �R = 0.4 and BelT (m) = pT (r) ∗ �T = 0.9,
and Bel(m) = 0.2 + 0.4 + 0.9 = 1.5 > η = (0.4 + 0.4 + 0.9)/2 = 0.85. As a
result, m is believed to be secure in this transaction using the protocol.

5.4 Summary

Traditional formal analysis for security protocols usually assumes that the
principals are trustworthy and the communication channels are safe and reli-
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able. They have been successful in detecting security flaws and ambiguity in
the protocols. However, in electronic transactions, the messages are exchanged
between principals under a hostile/uncertain environment. This may result in
inconsistent secure messages or conflicting beliefs between principals. Their
estimation is viewed as uncertainty issues in secure messages.

The inconsistency in secure messages has been a significant challenge to the
reliability of verification results and made the e-commerce activities at risk.
Although there have been considerable efforts in handling inconsistency issues,
they however focus on inconsistency between knowledge bases and do not
provide a numerical estimation to the inconsistency. Unlike the information
from traditional knowledge base, the features of secure messages must be
considered to measure the inconsistency in secure messages correctly.

In this chapter, we first developed a formal framework to deal with the
inconsistency in secure messages, taking into account the properties of fresh-
ness and dynamics of secure messages. The objective is to use this logical
framework in context of the formal analysis of security protocols. It achieves:

• measuring the inconsistency in secure messages with weight that represents
the degree of importance of message sources; and

• analysing the inconsistent secure messages by evaluating their reliability.

It enables the identification of uncertain messages from the secure and in-
secure messages. We have illustrated the use of this framework with some
examples, and evaluated the proposed approach experimentally. The experi-
mental results demonstrate that this method is useful to ensure the reliability
of the trust on the goal that can be put on the protocol.

Moreover, we proposed a probabilistic method to intuitively measure the
inconsistent beliefs between principals, and intended to handle the inconsis-
tent beliefs by a weighted majority criterion. In particular, the freshness and
dynamics properties of secure messages are taken in to account. This is able
to complement and enhance the formal proof of correctness of the protocols.

The belief in secure messages is classified into three categories, including
assumed belief, observed belief and the inferred belief. The combination of the
above beliefs represents the transmission of belief from initial belief to new
belief. In particular, this chapter presents a numeric estimation to measure
the inconsistent beliefs by using the MQC models. Moreover, we use minimal
conditional probability of rules and take into account dependent rules when
calculating the probability of rules.

The presented experiments demonstrate that our method can effectively
handle the inconsistent beliefs in secure messages, intuitively measure the
trust in the goal that can be put on the protocol, and ensure the correctness
of the proof of security protocols.
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Applications of Data Mining in Protocol
Analysis

Traditional formal approaches such as theorem proving and model checking
have been widely used to analyse security protocols. Ideally, they assume that
the data communication is reliable and require the user to predetermine au-
thentication goals mentioned in Chapter 5. However, missing and inconsistent
data have been greatly ignored, and the increasingly complicated security
protocols make it difficult to predefine such goals. We thus presents a novel
approach in this chapter to analyse security protocols using association rule
mining. It is able to not only validate the reliability of transactions but also
discover potential correlations between secure messages. The algorithms and
conducted experiments demonstrate that our approaches are useful in enhanc-
ing the current protocol analysis.

The rest of this chapter is organized as follows. We start from Section 6.1 by
introducing inconsistent secure messages and data mining. Section 6.2 briefly
overviews the related work. Section 6.3 presents some basic concepts. Sec-
tion 6.4 presents how to analyse inconsistent secure messages using associ-
ation rule mining. algorithms and experiments are described in Section 6.5.
Finally, we conclude this chapter in Section 6.6.

6.1 Introduction

The rapid growth of electronic commerce (e-commerce) not only plays a non-
trivial role in global economy but also poses a big challenge to security in
e-commerce. A plenty of security protocols have been developed to ensure
data integrity and confidentiality [38, 74, 140] in e-commerce. However, the
design of security protocols is usually error-prone [22], and missing and spu-
rious data are prevalent in data gathering today.

Traditional formal methods to analysing security protocols are mainly clas-
sified by theorem proving [22, 44, 120] and model checking [68]. They have
been successful in modelling the behaviour of a protocol and mathematically
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verifying that the protocol design and implementation satisfy safety require-
ments of protocols. Usually, the verification starts from the assumption, via
intermediate formulae, to the authentication goal predefined by users [44].
In other words, users should have clear ideas about what the suspectable
problems are. Nevertheless, it becomes very hard or even infeasible in case of
a complicated security protocol such as financial transaction protocol. Also,
some hidden or ambiguous security problems are not easy to detect by users.

Traditional formal analysis for security protocol unrealistically assumes
that the data communication is secure. However, the transmitted secure mes-
sages in a hostile environment can result in missing or inconsistent values
such as a user’s identity, credit card number and password in transaction
databases. Furthermore, these inconsistent messages are in fact interactional.
For example, a tampered user’s password may imply the potential divulgence
of the user’s credit card number and identity. Therefore, there is an urgent
need to improve and enhance the analysis of increasingly complicated security
protocols by identifying the potential correlations between secure messages.

In the past few years, data mining techniques emerged as a means of iden-
tifying patterns and trends from large quantities of data [3, 36, 67]. Among
them, association rule mining is a popular summarization and pattern ex-
traction algorithm to identify the correlations between items in transaction
databases [163]. Unlike the conventional association rule discovery, we extend
the original idea to association rule mining of inconsistent secure messages [32].
In order to conform to the new idea, we need to make considerable extension
to the original setting. It is briefly summarized as:

− Firstly, the missing messages in itemsets should be taken into account.
For example, given A′ = {expiration date, password2, account number}, it
misses message name. Therefore, itemset A = {expiration date, password1,
account number, name} and A′ are regarded as two different itemsets,
namely A′ �= A.

− Even all messages in two itemsets are corresponding, they must be con-
sistent, and otherwise they are deemed to be inconsistent itemsets. For
example, since the password2 in A′ is not equal to password1 in A, they
are inconsistent.

During transactions, if the messages in itemset A were lost or tampered, this
will lead to the decrease of the number of occurrence of this itemset, and in
this way, the degree of support and confidence for related rules will decrease
either. And thereby, it is reasonable to say this transaction is insecure in
case that the support and confidence of the rule is smaller than the specified
minimum support and minimum confidence by users or experts.

This chapter presents how to use association rule mining to analyse secu-
rity protocols and identify the potential correlations between secure messages.
Unlike traditional market basket data, the freshness of secure messages and
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validity of public keys must be examined before extracting frequent item-
sets. In particular, missing and inconsistent items in transaction databases
are converted to operable data for further data mining.

6.2 Related Work

Security protocols have become the requisite of e-commerce systems. However,
they easily suffer from malicious attacks due to their ambiguous specifications,
and their designs are a difficult and error-prone task [65]. A variety of methods
and tools have been developed to verify these protocols [112]. Among them,
theorem proving and model checking have gained many attentions.

As to theorem proving, BAN logic [22] is the representative work among
them, from which a number of approaches are developed [62]. It expresses the
assumption and goal as statements in a symbolic notation so that the logic
can proceed from a known state to one where it can ascertain whether the goal
is in fact reached. Therefore, it is not surprising that the predetermination of
authentication goals can become difficult owing to increasingly complicated
security protocols. Additionally, some latent flaws are not easy to detect.
Model checking is another kind of approaches aiming at automated verifi-
cation of security protocols. Lowe [97] used Failures Divergences Refinement
Checker (FDR) to debug and validate the correctness of Needham-Schroeder
protocol and Heintze [68] used FDR to verify NetBill and a simplified digital
cash protocol. However, they ideally assume that the communication channel
and principal are secure and trustworthy. The inconsistency between secure
messages is partially neglected.

There have been many approaches in tackling the inconsistency in knowl-
edge bases, such as arbitration based information merging [93] and majority
based information merging [96]. Nevertheless, they focus on the handling of in-
coherence in knowledge base rather than the inconsistency in secure messages.
A logical framework to merging inconsistent secure messages was presented
in [4]. Chapter 5 presents approaches to measure the inconsistency in secure
messages and the conflicting belief in secure messages. However, none of them
is able to identify potential associations between secure messages.

Data mining, with its potential to discover hidden and valuable informa-
tion from large databases has been successfully used to identify patterns and
trends from large quantities of data [3, 67]. Data mining has been applied in
a variety of areas, such as financial data mining, text mining, data mining
in healthcare and data mining in bioinformatics. Among them, association
rule mining plays an important role in identifying correlations between items
in transaction databases [163]. It is used to discover elements that co-occur
frequently within a data set, and to identify rules by reducing a potentially
huge amount of information to a small, understandable set of statistically
supported statements.
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Detection of security threats. Recently there has been a preconization
that data mining can be used for security purposes. One application is the use
of data mining to improve security, such as intrusion detection [91]. A second
application is the potential security hazards posed when an adversary has
data mining capabilities [4]. Data mining can be a potential means to detect
credit card fraud by analysing massive amounts of transaction data in a timely
manner; and identify and track individual activities such as money transfer
and communications for homeland security. For example, (1) an investigation
said a stolen credit card often is used to make a self-service purchase at a
gas station (to determine if the card is still active) immediately before it’s
used to buy jewelry or for some other major purchase. Such illicit transaction
patterns really stand out when the system has been ‘trained’ to recognize the
legitimate cardholder’s usage pattern. An irregular transaction prompts an
alert, which is transmitted instantly to the sales clerk handling the purchase;
(2) to identify potential terrorist suspects in a large pool of individuals, the
user may test the model using data that includes information about known
terrorists.

The detection models in [91] aim to develop a systematic framework to
semi-automate the process of building intrusion detection systems rather than
traditional intrusion systems constructed by manual and ad hoc means. Audit
mechanisms are needed to record system events, distinct evidence of legitimate
and intrusive activities will be then manifested in the audit data. Thus, a
normally infrequent failure may be easily detected in case of a large number
of consecutive failures due to intrusions. Its basic idea is to first compute the
association rules and frequent episodes from audit data. These patterns are
then used, with user participation, to guide the data gathering and features
selection processes.

The identification of frequent episodes is based on minimal occurrences.
Suppose there is an event database D, in which each transaction is associated
with a timestamp, an interval [t1, t2] is the sequence of transactions that starts
from t1 and ends at t2. Let X be an itemset in D. An interval is a minimal
occurrences of X if it contains X and none of its sub-intervals contains X.

• support(X ) is the number of minimal occurrences, which contains itemset
X and the number of records in D

• A frequent episode is the form of X, Y, Z, c, s, window, where X, Y and Z
are itemsets in D, s = support(X∪Y∪Z ) is the support of the rule, and c
= support(X∪Y∪Z )/support(X∪Y ) is the confidence. The width of each
of the occurrences must be less than window.

Moreover, the authors adapt previous mining algorithms to reduce irrelevant
rules or discover the low frequency patterns. The discover patterns will be used
as the indicator for gathering data and as the basis for selecting appropriate
temporal statistical features. Two rules r1 and r2 can be merged into one rule
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if 1) their right and left hand sides are exactly the same; and 2) the support
values and the confidence values are close within a defined threshold. For
example, (service = smtp, src bytes = 100) and (service = smtp, src bytes =
200) can be combined to (service = smtp, 200 ≤ src bytes ≤ 300). The merged
rule set can indicate whether the audit data has covered sufficient variations
of behaviour.

Protection of privacy. Although data mining techniques have recently
touched on privacy issues, they put emphasis on how to protect sensitive
knowledge before sharing. For example, a two-party algorithm [5] is presented
to efficiently discover frequent itemsets with minimum support levels, without
either revealing individual transaction values. Stanley and Osmar proposed a
new framework for enforcing privacy in mining frequent itemsets, in which it
combines techniques for efficiently hiding restrictive patterns [142].

As described in [4], the privacy concerns in data mining demand us to de-
velop accurate models without access to precise information in individual data
records. The authors thus build a decision-tree classifier from training data
in which the values of individual records have been perturbed. The resulting
data records are very different from the original records. A novel reconstruc-
tion procedure is then proposed to accurately estimate the distribution of
original data values.

This method focuses on two value distortion methods, in which a value
x i + r is returned instead of x i where r is a random value drawn from two
distributions.

• Uniform: The random variable has a uniform distribution, between [-α,
+α]. The mean of the random variable is 0.

• Gaussian: The random variable has a normal distribution, with mean µ

= 0 and standard deviation σ.

A measure is established to qualify privacy in terms of how closely the original
values of a modified attribute can be estimated. It is estimated by using c%
confidence that a value x lies in the interval [x 1, x 2] and the interval width
(x 2 - x 1) that defines the amount of privacy at c% confidence level.

It is necessary to reconstruct the original data distribution from the ran-
domized data. Suppose x 1, x 2, · · · , xn are n original values as realization of n
independent identically distributed (iid) random variables X 1, X 2, · · · , X n,
each with the same distribution as the random variable X. To hide their val-
ues, n independent random variables Y 1, Y 2, · · · , Y n have been used, each
with the same distribution as a different random variable Y. Given x 1 + y1,
x 2 + y2, · · · , xn + yn and the cumulative distribution function FY for Y, it
aims to estimate the cumulative distribution function FX for X.

Another limitation of current data mining is that while it can identify con-
nections between behaviors and/or variables, it does not consider the proper-
ties of secure messages. For example, an application may identify that prin-
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cipal A’s public/private key is related to a collusion attack. However, the
public key is usually regarded as a different item from the private key. In fact,
it is necessary to know both keys to generate A’s signature. Thus, the public
key and private key of principals are viewed as identical items. Moreover, the
freshness and validity of secure messages must be verified before data mining.
This is to ensure that the obtained transaction data is not a fraud. Unfor-
tunately, there is a lack of work that is closely related to security protocol
analysis using data mining.

6.3 Basic Concepts

Cryptography [130] is an essential tool to achieve data security such as au-
thentication, integrity and confidentiality in e-commerce systems. In general,
it is classified into asymmetric cryptography and symmetric cryptography.
Symmetric cryptography uses the same key (the secret key) to encrypt and
decrypt a message, and asymmetric cryptography use one key (the public
key) to encrypt a message and another key (the private key) to decrypt it.
The more details regarding cryptography principles can be seen in Chapter 1

Example 6.1. Alice can use a shared symmetric key k to encrypt a letter and
send it to Bob. Bob can use the same key to decrypt it. If Alice uses her private
key K−1(Alice) to sign the letter, Bob uses Alice’s public key K p(Alice) to
open it and knows it was really signed by Alice.

In addition to the cryptographic strength of cryptography algorithms, the se-
curity of e-commerce systems largely depends on the reliability of security
protocols that cover the full range of administrative and technical measures
that need to fulfill corporate security objectives. The following two fundamen-
tal elements are often highlighted in the formal analysis of security protocols:

− replay of messages that presents a message from different context is used
into the intended context to fool the honest participant into thinking they
have successfully completed the protocol run; and

− correct correlation of cryptography keys with specified principals.

The timestamp has been proved to be an efficient way to ensure the freshness
of secure messages in [40]. It plays an important role in preventing the replays
of former transmitted secure messages. The basic idea is to integrate a times-
tamp with the delivered message, and then check its validity by measuring the
discrepancy between server clock and local clock and the expected network
delay time (for received messages), or comparing it with the expiration time
(for generated messages). The follows present an instance and the details can
be seen in Chapter 5
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Example 6.2. If the attached timestamp T is 30 Nov 2004 18:35:20 +1000,
and the specified expiration time T expiration is 30 Nov 2004 18:34:28 +1000,
we can say the message is not fresh due to T > T expiration.

Authentication can be further enhanced by using certificates that are digitally
signed by recognized certificate authorities (CA) and are used to specify the
affiliation between public keys and principals. Figure 3.2 describes a public-key
infrastructure (PKI) that provides the issue, management and use of public
keys and certificates for authentication, privacy and other security properties.
A certificate is verified following the trust tree to a known trusted party.

In e-commerce systems, the authentication may occur in different transac-
tions and different places. According to the source of transaction data, secure
messages are classified into three categories:

− DS represents the transaction database where messages are generated and
sent to the receiver;

− DR represents the transaction database where messages are received and
authenticated; and

− DT = {DT1 , · · · , DTm} (1 ≤ m) represents all relevant transaction
databases to the third party such as financial institutions and certificate
issuers.

The transmitted secure messages stored in the above transaction databases are
actually valuable data sets that can be used to check the correctness of security
protocols using data mining. However, unlike the traditional market basket
data, the inherent properties of secure messages such as freshness require us to
perform additional authentication of their validity before starting data mining.
Correspondingly, a supporting relationship |= is needed to authenticate the
secure messages.

(1) |=D α iff α ∈ D, and α is fresh;
(2) |=D K p(X ) iff K p(X ) ∈ D, and K p(X ) is authenticated to be valid.

Here α indicates a secure message, D ∈ {DS , DR, DT }, and X represents the
principal who sent messages to the receiver.

However, there may exist conflicting supports between different transac-
tion databases. For example, |=DS α and |=DR ¬α show discrepant supports
between DS and DR. This phenomenon in fact indicates the possibility of
potential security flaws in security protocols.

As mentioned above, the user must ensure that the security requirements
are satisfied to authenticate a message. In other words, they must all be
true conditions to achieve the expected goal. As a result, the authentication
of each transaction can be viewed as an association rule including delivered
secure messages between principals. The trust in the authenticated goal can be
measured by the traditional support-confidence framework of data mining [3].
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The more messages (conditions) of the rule are tampered, the less frequent
the itemset will be. Therefore, the reliability of a transaction (or the trust
in the goal) can be evaluated in virtue of the support and confidence of the
corresponding association rule.

6.4 Association Rule Mining for Inconsistent Secure
Messages

This section adapts and extends the original association rule mining to analyse
inconsistent secure messages and identify the potential correlations between
secure messages.

6.4.1 The Basics of Association Rule Mining

Let I = i1, · · · , in be a set of items and D be a collection of transactions,
called transaction database. Each transaction T ∈ D consists of a collection
of items. Let A ⊆ I be an itemset. We can say that a transaction T contains
A in case A ⊆ T. An itemset A in a transaction database D has a support,
denoted as supp(A). Hence we have

supp(A) = |TA|/|D |%
where TA represents transactions in D, which contain the itemset A.

An itemset A in D is called a frequent itemset if its support is equal to,
or greater than, a given frequency threshold λ (minimum support) by user
or experts, namely supp(A) ≥ λ. An association rule is an implication of the
form, A→ B, where A and B are frequent itemsets, and A ∩ B = ∅. For each
association rule, we can use the support-confidence framwork [3] to measure
it. A rule A → B is valid if

(1) supp(A ∪ B) ≥ minsupp
(2) conf (A ∪ B) = supp(A ∪ B)/supp(A) ≥ minconf

where minsupp and minconf are designated by users or experts. Note that
we do not discuss how to select optimal minimum support and minimum
confidence in this book. Association rule provides a simple but efficient form
of rule patterns for data mining. It is briefly summarized as follows:

− Firstly, we need to extract all frequent itemsets from the transaction
database.

− Secondly, we determine valid rules from discovered frequent itemsets ac-
cording to the support and confidence of the rules.



6.4 Association Rule Mining for Inconsistent Secure Messages 183

Table 6.1. A transaction database

PID Items

P1 m1 m3 m4

P2 m2 m3 m5

P3 m1 m2 m3 m5

P4 m2 m5

To illustrate the use of the support-confidence framework, we present an ex-
ample of mining association rules below:

In Table 6.1, the universe I = {m1, m2, m3, m4, m5}. Each row in the
table can be viewed as a transaction database of a principal. For example, m1

= order, m2 = encryption key k−1, m3 = encrypted order using k−1, m4 =
decryption key k, m5 = order after decryption.

Let minsupp = 50% and minconf = 60%. According to the support-
confidence framework, we show a simple mining process in two steps:

(1) The mining starts from calculating the frequencies of k -itemsets. It is ob-
served that m1 occurs in P1 and P3, so its frequency is 50%, which is
equal to the minsupp. m2 occurs in P2, P3 and P4, and its frequency
is 75%, which is greater than minsupp. The frequencies of m3, m4 and
m5 are 75%, 25% and 75%, respectively. As a result, m1, m2, m3 and
m5 are frequent 1-itemsets. Furthermore, {m1, m3} occurs in P1 and P3,
its frequency is 50%, which is equal to minsupp; {m1, m2} occurs in P3

only, its frequency is 25%, which is less than minsupp. In the similar way,
we can determine remaining frequent 1-itemsets, 2-itemsets and 3-itemsets
that are presented in Table 6.2, Table 6.3 and Table 6.4, respectively. Note
that there is no frequent 4-itemsets in this case.

Table 6.2. Frequent 1-itemsets in the database

Frequent itemsets Frequency

{m1} 50%

{m2} 75%

{m3} 75%

{m5} 75%

(2) The second step aims to identify association rules from the obtained fre-
quent itemsets. Based on the Table 6.2, Table 6.3 and Table 6.4, {m2,
m3, m5}, {m2, m3} and {m5} are frequent 2-itemsets and 3-itemset
and 1-itemset, respectively. Furthermore, we have supp({m2 ∪ m3 ∪
m5})/supp({m2 ∪ m3}) = 1, which is greater than minconf = 60%. Thus,
m2 ∪ m3 → m5 can be identified as a valid rule. This means that if there is
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Table 6.3. Frequent 1-itemsets in the database

Frequent itemsets Frequency

{m1, m3} 50%

{m2, m3} 50%

{m2, m5} 75%

{m3, m5} 50%

Table 6.4. Frequent 3-itemsets in the database

Frequent itemsets Frequency

{m2, m3, m5} 50%

a higher support to the encryption key and encrypted order in the trans-
action database, the order after decryption is believed to be secure. In
this regard, it demonstrates the trust in the goal that can be put on the
protocol can be transferred to mining association rules.

There have been a great many efforts to develop algorithms or tools to increase
the efficiency of identifying the frequent itemsets and association rules [36, 67,
163]. Nevertheless, it is not an emphasis to discuss the topic of data mining
in this book. The details can be seen from relevant literatures.

6.4.2 Data Preparation

Traditional association rule mining does not consider the missing and incon-
sistent data. If an item is missed in a transaction, it will simply not be counted
when calculating the frequency of related itemsets. In particular, if an item is
inconsistent with another item, they will be viewed as different items, whereas
they may be correlated, such as k �= k ′ (tampered k by an intruder). These will
result in incorrect computation of the frequency of itemsets, and finding unex-
pected patterns. Thus, it requires us to standardize the obtained transaction
data from principals to ensure correct data mining.

Unlike the market basket data, secure messages have some properties, as
mentioned above. In addition, the local support from individual transaction
databases needs to be integrated to obtain a global support from databases
of all participants. Therefore, it is necessary for us to extend the previous
association rule mining to handle inconsistent secure messages.

The secure messages in transaction databases can be viewed as items.
Suppose D = {D1, · · · , Dk} is a set of transaction databases. Each transaction
database consists of a collection of secure messages. Let I = {x | x ∈ D i, 1 ≤
i ≤ k} be a set of items. A ⊆ I and B ⊆ I are itemsets. An association rule
is an implication of the form A → B where A ∩ B = ∅. The rule A → B has
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support, s in the set of transaction databases if s% of transaction databases
contains A ∪ B. The association rule has confidence, c in the set of transaction
databases if c% of transaction databases containing A contains A ∪ B.

Example 6.3. To register an account, the cardholder needs to fill out the reg-
istration form from CA with information such as the cardholder ’s name, date
of birth, expiration date and account billing address. Let I = {cardholder ’s
name, date of birth, expiration date, account billing address} be the set of
items. Hence we can say {cardholder ’s name, date of birth} and {expiration
date, account billing address} are itemsets as usual.

Suppose that a transaction T = D1 ∪ D2 ∪ · · · ∪ Dn comprises n transaction
databases, in which D i (1 ≤ i ≤ n) may be a sender, a receiver or the third
party. If D i contains ϕ and believes its freshness or validity when ϕ is a
public key, itemset ϕ has local support from D i, namely |=Di ϕ. The global
support of itemset ϕ actually integrates the local support from all transaction
databases in T. Additionally, the missing item is assigned null value, and the
inconsistent item is denoted by using symbol ¬.

For simplicity, all itemsets in the rest of this chapter are assumed to be
valid (freshness of messages or validity of keys) in the corresponding transac-
tion databases. The relevant authentication of secure messages can be seen in
Chapter 3 and Chapter 5.

Definition 6.1. Let Di be a transaction database and I be a set of items.
Suppose φ = {m1, m2, · · · , mk} ⊆ I is an itemset. Then,

|=Di φ iff |=Di ∀ mi ∈ φ
Example 6.4. Let ID be an identity number and AC be an account number.
Table 6.5 indicates the secure messages derived from the transaction database
of different principals. The item account number AC is contained in D1, D2

and D4 but missed in D3. Thus, |=D1AC, |=D2AC, |=D4AC and |=D3¬AC. It is
observed that AC and ID are missing in D3 and D4 respectively. In addition,
D3 contains an inconsistent item ¬ID. Consequently, we have |=D1AC ∪ ID,
|=D2AC ∪ ID due to |=D1ID and |=D2ID, whereas, �D2AC ∪ ID and �D2AC
∪ ID due to �D3AC, |=D3¬ID and �D4ID.

From the observation, secure messages are different from traditional market
basket data owing to their security properties. Although we ideally assume
that secure messages are valid and there is correct association between the
public key and principal, this cannot exclude the possibility of inconsistency,
including missing and inconsistent values, between secure messages due to the
potential message loss, communication block and broken cipher. Moreover, the
inconsistency has an effect on measuring the trust in the goal of the protocol
as mentioned in Chapter 5.

In particular, keys are different from ordinary secure messages. For exam-
ple, in public-key cryptography, each principal has a pair of keys: a public key
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Table 6.5. Secure Message Sources.

Database Account number Identifier Key

D1 AC ID K−1(X )
D2 AC ID K p(X )
D3 null ¬ID K p(X )
D4 AC null ¬K p(X )

and a private key. Usually, the public key is known to everybody but the pri-
vate key is known by the sender of the message only. Nobody can forge his/her
signature without knowledge of his/her private key. Therefore, for each pub-
lic/private key pairing, private key and public key are viewed as identical items
when computing the corresponding support and confidence. The traditional
association rule mining should be extended to deal with the public/private
key pairs and address the inconsistency between secure messages.

(1) Missing Item. If an itemset misses some items, it will be viewed as an
inconsistent itemset from the original one. For example, in Table 6.5, {AC,
ID} in D1 and D2, and {AC, null} in D4 are viewed as two inconsistent
itemsets since the item ID is missed in D4.

(2) Tampered Item. If some items are tampered in an itemset, the itemset is
regarded as an inconsistent itemset with the original one. For example, in
D1, the item ¬ID in D3 is a tampered item in contrast to item ID in D1

and D2. And thereby, itemset {null, ¬ID} in D3 and itemset {AC, ¬ID}
in D1 and D2 are viewed as inconsistent itemsets.

(3) Itemsets with Public/Private Key Pairs. For any two itemsets, an itemset
contains private key and the other contains public key. If the public key
and private key are correctly matched pairs and the encrypted item are
identical, they are regarded as identical itemsets. For example, in Table 6.5,
the public key K p(X ) in D2 and D3 matches with the private key K−1(X )
in D1 correctly. Nevertheless, ¬K p(X ) in D4 is a tampered public key.
Therefore, itemset {AC, K−1(X )} in D1 and itemset {AC, K p(X )} in D2

are viewed as identical itemsets, whereas, itemset {AC, K p(X )} in D2 and
itemset {AC, ¬K p(X )} in D4 are viewed as inconsistent itemsets owing
to the inconsistency between K p(X ) and ¬K p(X ).

6.4.3 Identifying Association Rules of Interest

During a transaction, if secure messages in an itemset are lost or tampered,
or public/private key pairs are not correctly matched, this will result in the
decrease of the number of occurrences of this itemset. Consequently, the de-
gree of support and confidence on the relevant association rule will decrease.
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Therefore, if the rule is not of interest, it is reasonable to say the correspond-
ing transaction is insecure. In order to compute the support of itemsets, we
need to extend the original association rule mining.

Definition 6.2. Suppose Di, 1 ≤ i ≤ n, is a transaction database in transac-
tion T. Let ϕ be an itemset and ϕ(Di) = {Di in T | Di contains ϕ}. Let the
global support of ϕ be supp(ϕ).

supp(ϕ) =
n

∑

i=1

|ϕ(Di)|/|T | (6.1)

Example 6.5. In Table 6.5, item AC is contained in D1, D2 and D4 but not
in D3. Consequently, we have |AC (D1)| = 1, |AC (D2)| = 1, |AC (D4)| = 1
and |AC (D3| = 0. In the same way, we have |{AC ∪ ID}(D1)| = 1, |{AC ∪
ID}(D2)| = 1, |{AC ∪ ID}(D4)| = 0 and |{AC ∪ ID}(D3)| = 0 because AC
and ID are missing in D3 and D4, respectively. Therefore, supp(AC ) = 3/4
= 0.75 and supp(AC ∪ ID) = 2/4 = 0.5.

An association rule is the implication χ: A→ B, where A ∩ B = ∅. Therefore,
the confidence of the rule A → B is

conf(A→ B) =
∑n

i=1 |χ(Di)|/|T |
supp(A)

(6.2)

Example 6.6. In an online booking, the user needs to fill out a form with credit
card number, key k, amount and address. They are encrypted and sent to mer-
chant Y. Initially, Y needs to authenticate the received message via the third
party such as financial institutions. Suppose D1 = {card number, k, amount,
address}, D2 = {card number, k, amount} and D3 = {card number, k, ad-
dress} are transaction databases. Let minsupp = 50% and minconf = 60%. We
have supp({card number, k, amount}) = 2/3 > 0.5, supp({card number, k}) =
1> 0.5 and conf ({card number, k})→ {amount}) = 2/3> o.6. {card number,
k} → {amount} can be extracted as a valid rule.

The derived rule indicates that this transaction is secure and the number
of lost and tampered messages is acceptably low. On the contrary, if the
inconsistency between secure messages is low, the support and confidence of
association rules will turn to be high. Hence we have

1. belief (A → B) = “secure”, if supp(A ∪ B) ≥ minsupp, conf (A → B) ≥
minconf ;

2. belief (A → B) = “insecure”, otherwise.

The belief in the association rule A→ B determines the reliability of the trans-
action T. For the rule that satisfies the above conditions, the corresponding
transaction is believed to be secure; if at least one condition is unsatisfied, the
transaction will be treated as being insecure. The given minsupp and minconf
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can be regulated to achieve different levels of security. In general, the larger
their values are, the higher the requirement of security will be. By using asso-
ciation rule mining, the trust in the transaction can be transferred to compute
the support and confidence of corresponding association rules. Therefore, it
provides a novel and efficient way to analyse security protocols.

6.5 Algorithms and Experiments

6.5.1 Algorithms

Identifying frequent itemsets is one of the key issues in discovering association
rules. There have been a number of algorithms developed for mining frequent
itemsets in databases. Among them, Apriori is a widely-used algorithm for
extracting frequent itemsets. However, the secure messages are different from
traditional data due to the security properties. Hence this algorithm is inap-
propriate to deal with inconsistent secure messages. In this article, we extend
the Frequent Patterns (FP) tree algorithm [9] to identify frequent itemsets
from secure messages based, in which the properties of secure messages are
taken into account.

Firstly, we need to generate all frequent items, which are supported by the
transaction databases of principals. The missing message, tampered message
and private/public key pairs mentioned above are considered to calculate the
support and confidence of itemsets correctly. We assume that the secure mes-
sages are fresh and generated and sent by the sender and received and seen
by whom it claims to be, and the keys have been authenticated to be valid
and issued by the correct authorities.

Algorithm 5.1 Mining Inconsistent Secure Messages
begin

Input : D : data set ; minsupp: minimum support ; minconf : minimum
confidence;

Output : frequent itemsets ;
//Select the candidate transaction database.

let Dc ← candidate transaction database with private key;
//Convert inconsistent secure messages.
//1 ≤ i ≤ n, 1 ≤ j ≤ m, in which n and m denotes the number and

cardinality of databases respectively.
forall D i ∈ D − Dc do

forall I ij ∈ D i do
if item I ij �= null then

if I ij is a key then
{
if I ij = I cj or matches with I cj in Dc then
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I ij = K (D i);
I cj = K (D i);

}
end

end
//Construct FP-tree.

forall I ij ∈ D do
F ← {};

F ← F ∪ frequent items of D i;
sort items in F according to the frequency;
add items to FP-tree;

end
//Mining frequent patterns from FP-tree.

forall nodei ∈ FP-tree do
process one node each time from bottom to the root;

output frequent itemsets;
end

end

This algorithm is used to extract frequent itemstes from transaction databases
of principals. Before extracting frequent itemsets, the public/private key pairs
in the databases need to be converted into a common assumed key K (X ) if
it equals to the private key of candidate database or matches it. FP-tree
algorithm [9] is used to mine frequent itemsets. It consists of two steps: (1)
constructing FP-tree; and (2) mining frequent itemsets from FP-tree. The
output only contains frequent itemsets so it is more efficient than the Apriori
algorithm.

Preprocessing of secure messages needs O(nm) time. As mentioned in
[9], the search time of inserting a transaction Trans into the FP-tree is
O(|freq(Trans)|), where freq(Trans) is the set of frequent items in Trans.
The worst case is |freq(Trans)| equals m. Thus, FP-tree construction needs
O(nm) time. The mining of frequent patterns phase is O(m) time. Hence, our
algorithm has the worst-case O(nm + m).

6.5.2 Experiments

In this section, we study the efficiency and performance of our algorithm
presented in Section 6.5.1 by verifying our algorithm against a stimulation
dataset. The dataset is derived from a merchant’s payment authorization pro-
cess in SET protocol. The merchant authorizes the transaction during the
processing of an order from a cardholder. Third parties here include the finan-
cial institutions and the processor of the transactions. SET aims at providing
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confidentiality of information, ensuring payment integrity, and authenticat-
ing both merchants and payment gateway. For simplicity, the processes of
authorization request and authorization response are considered only.

At the beginning, the merchant needs to generate an authorization request
and send it to a payment gateway. When the payment gateway receives the
authorization request, it verifies transaction identifier, and forwards an au-
thorization request to the issuer through a payment system. The transactions
details are briefly described as:

• Authorization Request. In order to authorize a transaction, the merchant
generates an authorization request AuthReq, which includes the amount to
be authorized, the transaction identifier from the OI. It is then combined
with the transaction identifiers TransIDs and the hashing of the order in-
formation OI. M signs AuthReq and encrypts it with a randomly generated
symmetric key k2. This key is then encrypted with the gateway’s public
key K p(P). Finally, the merchant transmits the authorization request to
the payment gateway P.

• Processing Authorization Request. The gateway decrypts the symmetric
key k2, and then decrypts authorization request using k2. It uses the mer-
chant public signature key K p(M ) to verify the merchant digital signature.
The gateway also verifies the merchant signature certificate and cardholder
signature certificate to ensure that they have not expired. Then the gate-
way decrypts k1 and cardholder account information with gateway private
key K−1(P), and decrypts the the payment instructions PI (created by
cardholder) using k1. The gateway also verifies the transaction identifier
received from the merchant by comparing it with the identifier in card-
holder payment request.

The extracted secure messages from the above transaction databases include
OI, PI, AuthReq, k2, K−1(P), K p(P), K p(M ), K−1(M ) and k1. They are
stored in the following databases.

− DM = {OI PI, AuthReq, K−1(M ), K p(P), k2}
− DP = {OI, PI, AuthReq, K p(M ), K−1(P), k2}
− DT = {OI, PI, AuthReq, K p(M ), K p(P), k2}
where key k1 is not included in the above transaction databases since it is
encrypted by K p(P) and is unknown to the merchant. Initially, each item
has a value corresponding to the record in databases. On the other hand, the
databases contain some inconsistent items such as missing items, tampered
items and unmatched private/public key pairs. Before mining frequent item-
sets, we need to convert the original item into unified data. Table 6.6 presents
the items of transaction databases.

Suppose that the minimum support minsupp = 50% and minimum con-
fidence minconf = 60%. Let i-itemset be the frequent itemset that contains
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Table 6.6. Payment Authorization in SET.

OI PI K (M ) K (P) k2 AuthReq

DM OI ¬PI K−1(M ) K p(P) k2 AuthReq

DP OI PI K p(M ) K−1(P) k2 ¬AuthReq

DT1 OI PI K p(M ) K p(P) k2 AuthReq

DT2 ¬OI PI K p(M ) K p(P) ¬k2 AuthReq

k items. Hence we can get frequent items = {OI 3, PI 3, K (M )4, K (P)4, K 3
2,

AuthReq3}, in which the superscript represents the frequency of items. For
example, supp(OI ) = (1 + 1 + 1)/4 = 75% > minsupp and supp(PI ) = (1
+ 1 +1)/4 = 75% > minsupp.

Based on the derived frequent items, we can find out all frequent k-
itemsets(k ≥ 2) using the algorithm described in Section 6.5.1, in which no
candidate itemset needs to be generated. The second step is to extract all
association rules from the derived frequent itemsets. Several obtained associ-
ation rules are listed below. The rules can be used to measure the trust in
the goal that can be put on the protocol. On the other hand, some rules can
be used to detect correlations between secure messages, which possibly imply
potential security flaws. For simplicity, we present the findings of association
rules in relation to 5-itemsets only.

(1) supp(OI ∪ PI ∪ K (M ) ∪ K (P) ∪ k2) = 50% ≥ minsupp
(2) supp(OI ∪ PI ∪ K (M ) ∪ K (P) ∪ AuthReq) = 25% < minsupp
(3) supp(OI ∪ PI ∪ K (M ) ∪ k2 ∪ AuthReq) = 25% < minsupp
(4) supp(OI ∪ PI ∪ K (P) ∪ k2 ∪ AuthReq) = 25% < minsupp
(5) supp(OI ∪ K (M ) ∪ K (P) ∪ k2 ∪ AuthReq) = 50% ≥ minsupp
(6) supp(PI ∪ K (M ) ∪ K (P) ∪ k2 ∪ AuthReq) = 25% < minsupp

From the observation, only (1) and (5) are frequent itemsets, from which
association rules can be derived. For example, supp({OI, K (M ), K (P), k2}) =
3/4 = 75% > minsupp, and conf ({OI, K (M ), K (P), k2} → AuthReq) = 67%
> minconf. Therefore, {OI, K (M ), K (P), k2} → AuthReq can be extracted
as a valid rule of interest. This rule indicates that AuthReq is believed to
be secure because OI, K (M ), K (P), and k2 are reliable. This rule in fact
corresponds to a transaction in the payment authorization.

On the other hand, some discovered rules can imply potential correlation
between secure messages. For example, supp({OI, PI }) = 0.5 > minsupp,
supp(K (M ), K (P), k2) = 0.75 > minsupp, and conf ({K (M ), K (P), k2} →
{OI, PI }) = 0.67 > minconf. Therefore, {K (M ), K (P), k2} → {OI, PI } is
a valid rule of interest. This rule represents the correlation between {K (M ),
K (P), k2} and {OI, PI }. In other words, the trust in {K (M ), K (P), k2}
has an effect on the trust in {OI, PI }. Therefore, if PI and OI are found
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to be highly inconsistent in transaction databases, K (M ), K (P) and k2 are
suspected of being attacked.

Looking at (2), (3), (4) and (6), they are not frequent itemsets. Hence,
they are ignored from discovering association rules. In other words, the secure
messages in each of them take a low risk of being attacked.

6.6 Summary

The rapid growth of e-commerce brings out tremendous data exchanged be-
tween principals. Some data is secrets and must be protected from the mali-
cious attacks. The formal analysis for security protocols is a useful way to find
subtle flaws in the initial stage of protocol design. However, they usually make
ideal assumption that the principals are honest and the data communication
is secure. In practical trading environments, it may be impossible to exclude
the possibility of missing and inconsistent data during transactions. The in-
consistent secure messages have been a big challenge to the trust in electronic
transactions. In that case, the traditional formal analysis may be unfit for
dealing with the analysis with inconsistent messages. Thus, it requires us to
develop new methods to enhance the current protocol analysis.

On the other hand, traditional formal approaches to analyse security pro-
tocols require users to predetermine authentication goals. However, it may be
very difficult for the users to enumerate all suspectable points. In particular,
the applications to which the security protocols can be put become varied
and more complex, such as financial transactions. Fortunately, the transac-
tion data of principals provide a valuable data set for further data mining.
The trust in the goal of the protocol can be transferred to identify frequent
patterns from the delivered secure messages between principals.

This chapter thus proposes a novel method to analyse security protocols
in terms of association rule mining. The properties of secure messages are
considered in the framework to examine secure messages before starting data
mining. In particular, it takes into account the missing items and inconsis-
tent items of secure messages and public/private key pairs. The discovered
association rules are able to not only measure the trust in the corresponding
transactions but also unveil potential associations between secure messages.
The presented algorithm and experiments demonstrate that our methods can
enhance the existing protocol analysis in an intuitive and systematic way.
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Detection Models of Collusion Attacks

Security protocols have been widely used to safeguard secure electronic trans-
actions. We usually assume that principals are credible and will not mali-
ciously disclose their individual secrets to someone else. Nevertheless, it is
impractical to completely ignore the possibility that some principals may col-
lude in private to achieve a fraudulent or illegal purpose.

Collusion attack has been recognized as a key issue in e-commerce systems
and increasingly attracted people’s attention for quite some time in the liter-
ature on information security. Regardless of the wide application of security
protocols, this attack has been largely ignored in the protocol analysis. There
is a lack of efficient and intuitive approaches to identify this attack since it
is usually hidden and too complicated to find. Therefore, it is critical to ad-
dress the possibility of collusion attacks in order to analyse security protocols
correctly. This chapter presents two frameworks by which to detect collusion
attacks in security protocols. The possibility of security threats from insiders
is especially taken into account. The results demonstrate that the frameworks
are useful and promising in discovering and preventing collusion attacks, and
enhancing the protocol analysis.

This chapter is organized as follows. Section 7.1 spells out our motivation
to detect the collusion attack. Section 7.2 gives an overview to related work.
In Section 7.3, we present the detection of collusion attack using data mining.
The detection of collusion attack is converted into identifying frequent item-
sets and matching rules. Section 7.4 presents a model by which to measure the
probability of the attack using Bayesian networks. It helps users find the di-
rect and indirect dependencies between secure messages. Section 7.5 concludes
this chapter.

7.1 Introduction

With its rapid growth, electronic commerce (e-commerce) has come to play
a central role in the global economy. However, the vast growth potential of
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electronic commerce is weakened due to security concerns, and security has
become a high profile problem in e-commerce systems. For example, a cus-
tomer’s transaction record can be maliciously intercepted and revealed by
computer or network hackers.

Threats to the security of electronic transactions can be classified into
internal and external. The internal threat is clearly a danger, but most com-
panies are more concerned about the external threat. Many companies feel
reasonably safe from the internal threat, confident that it can be controlled
through corporate policies and internal access control. Hence, they focus on
the unknown outside users who may gain unauthorized access to the corpora-
tion’s sensitive assets. Although it is usually very hard for a single principal to
break through the protective barriers surrounding secure messages, a certain
number of dishonest principals may put their respective secrets together to
launch a collusion attack.

As a fundamental measure to fulfil corporate security objectives, security
protocols have been commonly treated as a requisite of e-commerce systems.
However, their designs create a difficult and error-prone task, and some subtle
flaws have been found in a number of security protocols that were previously
believed to be secure [22]. Subsequently, there has been considerable research
on the analysis of security protocols by developing methodologies, theories,
logics, and other supporting tools [22, 40]. These efforts are effective in over-
coming weaknesses and reducing redundancies at the design stage of proto-
cols. Among such efforts, the formal methods including theorem proving [22]
and model checking [68] have been regarded as two of the most efficient ap-
proaches for protocol analysis. However, the possibility of internal threats, as
mentioned above, has been greatly underestimated and ignored in the tradi-
tional approaches. They unrealistically assume that no principal can access
secrets that exceed his/her usual legal authority. However, a user who at-
tempts to obtain unauthorized data by colluding with other principals might
discover more secrets that would otherwise remain protected. For example,
principals A, B and C in Figure 7.1 can collude with each other to gener-
ate a message {m1, m2, m3} even though none of them previously knew this
message individually. Therefore, detecting collusion attacks is critical so that
reliable analysis of security protocols can be achieved.

There have been considerable efforts to ensure that digital data is secure
from attack by collusion. A general fingerprinting solution used to detect any
unauthorized copy is presented in [11]. A novel collusion-resilience mechanism
using pre-warping was proposed to trace an illegal un-watermarked copy [25].
However, no work has been conducted to detect collusion attacks in security
protocols.

The possibility that a collusion attack may occur is, in fact, determined
by the degree of message sharing. Therefore, we can measure it by identify-
ing frequent itemsets from transaction data sets [163]. The frequent itemsets
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obtained can be used to search for collusion attacks. Also, we may need more
illuminating ways to measure the likelihood that it may happen. In other
words, we want to have a numeric estimation that the collusion attack hap-
pens, and to correctly capture the threat. Bayesian networks that have been
widely used to represent the probabilistic relationships among a number of
variables and conduct probabilistic inference with them [11] are eligible to fulfil
this task. On the other hand, the available transaction databases of principals
provide valuable but low cost data to perform Bayesian inference.

This chapter presents two frameworks to detect collusion attacks by using
data mining [34] and Bayesian inference [35], respectively. As to the former,
frequent itemsets that may launch attacks are extracted from the transaction
data sets of principals. This reduces the search space. In particular, they
are converted into the form of Prolog in order to match the rules in the
established knowledge base. The case study demonstrates that our approach
can complement the traditional analysis of security protocols. In the latter,
it uses Bayesian networks to identify the hidden probabilistic dependency
between secure messages and determine the likelihood that collusion attacks
may occur.

7.2 Related Work

Digital watermark/fingerprint attack. Digital watermarking schemes al-
low tracing of illegally redistributed multimedia contents such as audio, image
and video, and achieve copyright protection. To facilitate tracing of copyright
violators, a number of watermarks carrying information about the transaction
or content receipt can be embedded into the content before distribution. This
form of personalised watermark is called fingerprint.

The collusion attacks allow a set of dishonest colluders to generate a new
copy whose mark does not identify any of the colluders. This copy is to be re-
distributed illegally. To prevent collusion attacks, several fingerprinting codes
to resist collusion attacks have been described [52, 105]. The identification of
honest customers should be kept secret unless they act dishonestly. An honest
customer should not be accused falsely by a dishonest vendor.

In traditional symmetric fingerprinting, the mark is embedded into the
content by the merchant who later sell the market copy to the customer. The
main problem of such schemes is that a dishonest merchant/custermer can
redistribute a copy recently sold and can claim that it was customer/merchant
who sent the copy. To prevent this situation, only the customer must know
his/her marked copy. Such schemes are called asymmetric schemes.

A public fingerprinting infrastructure is proposed in [105]. It shows how
to implement in practice asymmetric fingerprinting by using symmetric algo-
rithms and trusted third parties. The customer and merchant must complete
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registration with the registration authority (RA) and the fingerprinting au-
thority (FA), respectively. Then, the merchant can use FA to mark digital
content and the customer can obtain an unchangeable pseudonym PS c from
RA. The protocols below will be used when a customer decide to make a
purchase.

• Mark embedding. To make a purchase, a customer must generate a
message including a description of the product X, perform a payment.
The merchant must verify the validity of the signed messages and the FA
must construct a collusion-secure fingerprinting code. Finally, a marked
copy X̄ is sent to the customer.

• Identification of dishonest customers. If the merchant finds an ille-
gally redistributed copy of the multimedia content, this protocol is used
to identify dishonest customers. It aims to identify either the owner of X̄ ,
or some of the colluders that contributed to create an altered copy of X̄ ,
X̂. The primary procedures include:
1. M sends the illegal copy to FA.
2. FA recovers the embedded mark m from the illegal copy. A robust

watermarking scheme should be able to indicate whether a mark is
embedded in the object or not.

3. If a mark has been found, the message is decoded so that an illegal
codeword is obtained. The mark is decoded as it may have been altered
as a result of a collusion attack.

4. The pseudonym related to the guilty codeword is sent to RA to disclose
the identity of guilty customer.

Collusion attack and performance evaluation. In a collusion attack,
different fingerprinted copies of same host data are jointly processed to remove
the fingerprints or hinder their detection. Several existing collusion attack
techniques are listed below.

• Averaging collusion attack. The attacked image Ê is created by averaging
K fingerprinted images. Under this attack, each colluding fingerprint has
a contribution of strength 1/K in the attacked sequence Ŵ . This attack
requires a large number of fingerprinted images to reduce the correlation
coefficient substantially.

• Maximum-minimum collusion attack. The attacked image is created by
talking the average of the maximum and minimum values across the com-
ponent values of the fingerprinted image. The attack considers the possi-
bility that the fingerprinted values of a particular position across the fin-
gerprinted images may not be evenly distributed around its mean value.
Therefore, this attack uses the middle point between the maximum and
minimum rather than using the mean value.
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• Negative-correlation and Zero-correlation collusion attack. This attack is
to drive the correlation coefficient to negative value using as few as five
fingerprinted images [146]. The attacked images take on the least likely
values across the fingerprinted copies as the attacked values.

In [156], a new collusion attack scheme is proposed and evaluated in terms of
fingerprint detectability and imperceptibility after attack is assessed.

• Detectability. An attack is considered effective if the original fingerprint
cannot be detected from the attacked data, whereas this may not neces-
sarily mean that the original fingerprint is completely removed.

• Imperceptibility. An attack is successful if the perceptual quality of the
attacked data does not deteriorate substantially from the original finger-
printed data. For example, the visual quality of the attacked image must
not drop much in contrast to the fingerprinted image.

A correlation coefficient and a weighted PSNR (Peak signal-to-noise ratio)
are used to measure the fingerprint detectability and visual quality, respec-
tively. The expression for weighted PSNR (wPSNR) is computed by using the
formulae below.

wPSNR = 20log10
max(p)

‖NV F (p′ − p)‖

NV Fj1,j2 =
1

1 + σ2
Lj1,j2

where p represents the original image pixels, p′ denotes pixels of the tested
image, ‖ ‖ denotes the root-mean-square value. In the expression of NVF
(noise visibility function), σ2

Lj1,j2
represents the local variance of an image in

a window centered on the pixel with coordinates (j 1, j 2).
Let W T be a colluding fingerprint. The correlation coefficient of Ŵ and

W T can be calculated by using the formula below.

C(Ŵ ,WT ) =
cov(Ŵ ,WT )

√

var(Ŵ ) ∗ var(WT )

where cov(Ŵ , W T ), var(Ŵ and var(W T ) represent the covariance of Ŵ and
W T , the variance of Ŵ and the variance of W T , respectively.

The performance evaluation of collusion attacks depends on the number of
colluding parties to achieve near-zero-zero detection and the resultant visual
quality of the attacked data.

It is observed that most of existing studies in collusion attacks mainly
focus on either developing new fingerprinting methods for copyright protection
or proposing schemes for evaluating the strength of the fingerprint against
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different collusion attacks. Nevertheless, current approaches still have some
limitations.

• No matter symmetric fingerprinting or asymmetric fingerprinting, we are
still concerned about their robustness to some extent due to varied collu-
sion attacks.

• Existing evaluation schemes can assist in comparing the strength of differ-
ent fingerprinting techniques against specific collusion attacks, whereas it
is unrealistic for a fingerprint to be robust in all cases.

Unlike the multimedia content, transaction data is often shared by more than
one principal. The collusion attacks on the data are usually hidden to us and
have no obvious symptoms like visual quality of fingerprints. Unfortunately,
no much work has been found to identify collusion attacks in an intuitive way.
As a result, it is necessary to identify potential collusion attacks by analysing
the available transaction data.

7.3 Identification of Frequent Patterns for Collusion
Attack Detection

7.3.1 Basic Concepts

The processing of messages usually includes generation, sending, receiving and
authentication in e-commerce systems. They are transmitted via either plain-
text or ciphertext. The following rules are derived from the ENDL logic [29]
in Chapter 3 and present the fundamental operation of the messages.

(1) Generation Rule. If message m is generated by X, X must know m.

generate(X,m)
know(X,m)

(2) Delivery Rule. If X knows message m and sends m to receiver Y, Y knows
the message m.

know(X,m)∧send(X,Y,m)
know(Y,m)

(3) Public Key Rule. If Y knows message m, Y can sign this message using
his/her private key.

know(Y,m)
know(Y,S(m,K−1(Y)))

(4) Encryption Rule. If Y knows message m and a key k, Y can encrypt this
message using k.

know(Y,m)∧know(Y,k)
know(Y,E(m,K))
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(5) Belief Rule. X generates message m and sends it to Y. If Y sees this
message and m is fresh, Y believes X in the message m.

send(X,Y,m)∧know(Y,m)∧fresh(m)
believe(Y,X,m)

This rule indicates that principal Y believes that the message m from X
is not a replay. The timestamp is usually used to ensure the freshness of
secure messages [40].

(6) Certificate Rule1. If CA2’s certificate is signed with CA1’s private key,
and Y verifies CA2’s public key using CA1’s public key, Y believes CA2’s
public key.

signsc(CA1,CA2,Cert(CA2)CA1)∧verify(Y,CA2,Kp(CA2))

believe(Y,CA2,Kp(CA2))

(7) Certificate Rule2. If X ’s certificate is signed with CA2’s private key, and
Y verifies X ’s public key, principal Y believes X ’s public key.

signsp(CA,X,Cert(X)CA)∧verify(Y,X,Kp(X))

believe(Y,X,Kp(X))

The first four rules describe the generation, transition and basic encryption
operation of messages. The remainder validate the belief surrounding the mes-
sage freshness and the validity of the principal’s public keys. More rules can
be found in Chapter 4, thus they are not described here due to limited space.

A collusion attack usually consists of an intruder Z, a group of principals P
= {P1, · · · , Pn}, and a threshold of collusion attack k, 1 ≤ k ≤ n. Figure 7.1
presents an instance of how A, B and C can collaborate to disclose a secret
to Z. Note, not all combinations of k principals are able to break the secret.
In a simple way, a collusion attack may include the following factors:

− Principal P : the user who participates in the transaction using electronic
transaction protocols.

− Intruder Z : a user who intends to collect messages from a certain number
of dishonest principals to launch the attack.

− Threshold k : the minimum number of principals who can collude to per-
form a collusion attack.

Definition 7.1. The access structure Γ of the group P = {P1, · · · , Pn} de-
notes principals who may jointly recover secret s by putting their individual
secrets together. MX denotes a set of secure messages of X. A(k, n) is the
threshold scheme that allows the secret to be recovered if the currently active
subgroup A ⊂ P has k < n principals.

Γ = {A | α1 ∧ · · · ∧ αk → s, αi ⊂ M Xi , X i ∈ A, 1 ≤ k ≤ n}
where αi represents a subset of messages from M Xi .
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A

B

C

m1

m3

m1, m2, m3

Z

m1, m2

Fig. 7.1. A collusion attack handled by A, B and C

Example 7.1. Let M Tom = {Jim, order}, M Bob = {order, one, textbook} and
M Alice = {biology, textbook} be secure messages. Nobody can obtain a full
understanding of this order alone but ‘Jim orders one biology textbook ’ can be
derived by integrating {Jim} ⊂ M Tom, {order, one} ⊂ M Bob and {biology,
textbooks} ⊂ M Alice together. Hence, we have Γ = {Tom, Bob, Alice} and
k = 3.

From the observation, the above instance cannot generate a collusion attack
since it requires all principals to participate in generating the order. Tom and
Bob for instance may cooperate to get ‘Jim orders one textbook ’ but never
know it is a textbook of biology. According to Definition 8.1, a collusion attack
must satisfy three conditions.

(1) α1 ∧ · · · ∧ αk → s, αi ⊂ M Xi , X i ∈ A;
(2) 1 ≤ k ≤ n; and
(3) ∀ αi, αi must belong to more than one principal at least.

If αi belongs to a single participant X i only, it is not difficult to confirm
that X i participated in the attacks. Nevertheless, some secrets may be shared
among several principals. In this case, it is hard to determine who should be
responsible for the disclosure of the secrets. This may endanger transaction
security, as the intruder Z is able to generate the secret s without going
through the usual authentication process.

7.3.2 A Framework to Detect Collusion Attacks

As mentioned above, each αi used to launch the attack must belong to more
than one principal. Hence, it is necessary to discover the αi that is shared
by more than one principal. The secure messages from each principal can be
viewed as a transaction database. Therefore, the detection of αi can be con-
verted to identify frequent k -itemsets (2 ≤ k ≤ n). The detection of collusion
attacks may include the following phases:
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1. identify frequent k -itemsets from the transaction database of principals;
2. construct knowledge based on the given inference rules, and;
3. detect collusion attacks by matching frequent itemsets with the knowledge

base.

Identifying Frequent Itemsets. Let I = {i1, · · · , in} be a set of items
and D be a collection of transactions, called the transaction database. Each
transaction T ∈ D consists of a collection of items. Let A ⊆ I be an itemset.
We can say that a transaction T contains A in the case of A ⊆ T. An itemset
A in a transaction database D has a support, denoted as supp(A). Hence, we
have:

supp(A) = |TA|/|D|% (7.1)

where TA represents transactions in D, which contain itemset A.
An itemset A in D is called a frequent itemset if its support is equal to, or

greater than, the minimum support minsupp that is designated by a user or
experts. The details can be found in the support-confidence framework [3, 163].
In this chapter, Frequent Patterns (FP) tree algorithm [67] is used to identify
frequent itemsets from transaction data. Nevertheless, we do not focus on
discussing how to select an optimal algorithm to discover the rules of interest
as in traditional data mining.

From the observation, minsupp needs to be specified so that frequent item-
sets can be identified. According to the prerequisites of collusion attacks men-
tioned above, each message subset αi must belong to at least two principals.
Suppose there are n(n ≥ 3) principals in a transaction. Then,

minsupp =
m

n
(7.2)

Here, n must be equal to, or greater than, 3 for it is impractical for a collusion
attack to take place in a transaction that includes only two principals. In other
words, it is not difficult to detect this attack if it really happens. On the other
hand, the value of m ≥ 2 can be tuned by users in terms of different level of
security requirements. The bigger its value is, the more the identified frequent
itemsets will be.

Example 7.2. Suppose there are four principals, P1, P2, P3, and P4, in a
transaction T. Their datasets are represented by {α, β, γ, µ}, {α, β, µ}, {β,
γ, ν} and {α, γ}, respectively. Let m = 2. According to formula (8.2), we have
minsupp = 2/4 = 0.5. Then, supp(α) = 3/4 = 0.75 > minsupp, supp(β) = 3/4
= 0.75 > minsupp, supp(γ) = 3/4 = 0.75 > minsupp, supp( µ) = 2/4 = 0.5
≥ minsupp and supp(ν) = 1/4 = 0.25 < minsupp. Thus, frequent 1-itemsets
include {α}, β, γ and µ. In the same way, we can identify frequent 2-itemsets,
such as supp(α ∪ β) = 2/4 = 0.5 ≥ minsupp.
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7.3.3 Dealing with Knowledge and Facts

This section suggests how to construct a knowledge base and manipulate
derived facts from transaction databases. For brevity, it assumes that com-
munication channels and keys are secure and reliable. Additionally, the secure
messages are assumed to be fresh, and there are correct associations between
public keys and principals. Consequently, the belief in message freshness and
the validity of a principal’s public keys are not discussed here. The details can
be seen from Chapter 3.

As mentioned in Chapter 4, a knowledge base comprises the knowledge that
is specific to the domain of application, including such things as facts in the
domain, and rules that describe the relations or phenomena in the domain.
The inference rules of knowledge base consist of the basic manipulation of
secure messages in security protocols. Facts are defined as general knowledge
that is commonly accepted by people. For example, ‘Alice knows her own
public/private keys’. Suppose R denotes the inference rules of a knowledge
base. Then,

R = {rule1, rule2, · · · , rulen}
where the rules of a knowledge base are of the form:

rulei = {(N, [Conditionij ], Conclusioni)| 1 ≤ i n, 1 ≤ j}
where Conditionij is a set of simple assertions linked by logic connectives,
Conclusioni is a simple assertion without logic connectives, and N is the rule
name. The assertions in rules can be terms that contain variables.

Example 7.3. The generation rule and delivery rule in Section 7.3.1 can be
written as rule1 = (1, [generate(X, m)], know(X, m)) and rule2 = (2,
[know(X, m), send(X, Y, m)], know(Y, m)) respectively.

Each transaction database comprises a collection of secure messages from a
corresponding principal. As mentioned above, we aim to identify frequent
itemsets from transaction databases. The detection of collusion attacks is
implemented by matching derived frequent itemsets with knowledge bases.
Suppose the transaction database T contains m principals. Then,

T = {M P1 , · · · , M Pm}
where each M Pi (1 ≤ i ≤ m) denotes the set of secure messages from princi-
pal P i.

Example 7.4. Based on Example 7.2, we have T = {M Tom, M Bob, M Alice} =
{{Jim, order}, {order, one, textbook}, {biology, textbook}}.
Detecting Collusion Attacks. The established knowledge base and derived
frequent itemsets will be used to detect potential collusion attacks in security
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protocols. In this chapter, the intrinsic inference mechanisms of Prolog [20] are
used to manipulate the knowledge base and frequent itemsets. Nevertheless,
the frequent itemsets need to be converted to the forms of predicate that
conform to Prolog. In addition, the host names of secure messages are required
to identify principals who may involve themselves in the attack.

Definition 7.2. Suppose Fk = {{α1, · · · , αk} | supp(α1 ∪ · · · ∪ αk) ≥ min-
supp, αi ∈ T, 1 ≤ i ≤ k} denotes a set of frequent k-itemsets from transaction
T. Let P = {P1, · · · , Pn} be a group of principals who participate in this trans-
action. Then,

know(Pj , {α1, · · · , αk}) iff {α1, · · · , αk} is a frequent itemset of Pj (7.3)

In this definition, the predicate know(P j , {α1, · · · , αk}) denotes that the
principal P j knows the message {α1, · · · , αk}. According to the formula (7.2),
{α1, · · · , αk} ought to be known by more than one principal.

Example 7.5. As mentioned in Example 7.2, α, β, γ, and µ are frequent
1-itemsets and α ∪ β is frequent 2-itemsets. Hence, we have know(P1,
α), know(P1, β), know(P1, γ), know(P1, µ), know(P2, α), know(P2, β),
know(P1, α ∪ β) and know(P2, α ∪ β) after conversion.

The converted frequent itemsets can be collected via interaction using a user
interface. Additionally, the fact database is emptied before collection. Once
users submit a detection request, we need a reasoning procedure to manipulate
the knowledge base and derived frequent itemsets efficiently. As for if-then
rules, there are two basic ways of reasoning [20], including backward chaining,
and forward chaining.

In contrast to forward chaining, backward chaining starts with a hypothe-
sis and works backwards, according to the rules in the knowledge base, toward
easily confirmed findings. Thus, the backward chaining is chosen as the rea-
soning method in our detection model, which searches for the goal we want
to verify. The detection starts with a pre-defined suspect secure message that
may suffer from collusion attacks. If it eventually reaches the goal, the au-
thentication succeeds. In other words, a collusion attack is found. Otherwise,
if the goal cannot be proven, based on existing information, it is natural to
conclude that no collusion attack occurred in the current transactions.

7.3.4 A Case Study

To illustrate the application of the proposed approach, an instance in respect
of an online transaction intersected from SET protocol [140] is presented. It
is sufficiently flexible for us to analyse other security protocols due to the
extensibility of knowledge base.
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This example presents a registration form request handled by a cardholder
C. It aims to obtain a valid registration form from certificate authority (CA)
to complete registration. If the registration form can be obtained, it is not
difficult to initiate a certificate request to gain valid certificates issued by CA.

As described in [140], the transited secure messages comprise primary ac-
count number (PAN ), registration form request (RegFormReq), symmetric
key k1 and public key-exchange key of CA, namely Kpb(CA)). Only CA, C
and the Issuer know PAN, which is effectively obfuscated using a blinding
technique. Suppose there are four principals in this process. The set of se-
cure messages from each principal can be regarded as a transaction database,
such as M P1 = {PAN, RegFormReq, k1, Kpb(CA)} and M P4 = {null, null,
null, Kpb(CA)}. Table 7.1 presents the secure messages in the transaction
databases.

Table 7.1. Secure messages in registration form request.

Principal PAN RegFormReq k1 Kpb(CA)

P1 PAN RegFormReq K 1 Kpb(CA)

P2 PAN RegFormReq K 1 Kpb(CA)

P3 PAN RegFormReq null Kpb(CA)

P4 null null null Kpb(CA)

The goal is to identify frequent itemsets from Table 7.1. Let m = 2. According
to the formula (7.2), minsupp = 2/4 =0.5. As a result, the frequent itemsets
can be derived using the Frequent Patterns (FP) algorithm [67].

• frequent 1-itemsets: {PAN}, {RegFormReq}, {k1}, {Kpb(CA)};
• frequent 2-itemsets: {PAN, RegFormReq}, {PAN, k1}, {PAN, Kpb(CA)},
{RegFormReq, k1}, {RegFormReq, Kpb(CA)}, {k1, {Kpb(CA)};

• frequent 3-itemsets: {PAN, RegFormReq, k1}, {PAN, RegFormReq,
Kpb(CA)}, {RegFormReq, k1, Kpb(CA)};

• frequent 4-itemsets: {PAN, RegFormReq, k1, Kpb(CA)}.
After obtaining these frequent itemsets, it is necessary to convert them to
the forms of predicate as Prolog. {PAN }, for example, can be transformed to
know(P1, PAN ), know(P2, PAN ), know(P3, PAN ) and know(P4, PAN ).

The knowledge base that consists of inference rules and facts can be con-
structed via a user interface mentioned in Section 7.3.2. Once the processes
are completed, the user can submit a detection request:

?− Detection(E (RegFormReq, k−1))
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Backward chaining search is applied here. The detection model attempts to
find matched rules to the verified goal from the knowledge base. The detection
system finally returns a ‘true’ value for Detection(E (RegFormReq, k1)) since
{RegFormReq, k1} is a frequent itemset and satisfies the encryption rule of
knowledge base. Finally, an early warning of collusion attacks is sent to the
user. In the same way, the user can lodge another request:

?− Detection(S (<k1, PAN>, Kpb(CA)))

In this request, the detection system needs to deal with the matching of two
frequent itemsets including {k1, PAN } and {Kpb(CA)}. Finally, it is ascer-
tained that the transaction contains potential collusion attacks since both {k1,
PAN } and {Kpb(CA)} are frequent itemsets and satisfy the public key rule
of the knowledge base. Certainly, the user can put in any detection requests,
and more exercises are left to the reader.

7.4 Estimation of the Probability of Collusion Attacks

Collusion attack has been recognized as a key issue in e-commerce systems
and has increasingly attracted attention for quite some time in the literature
on information security. Although the framework developed in Section 7.3
provides a useful way to identify collusion attack, there is a lack of methods
to measure the likelihood of the attacks. Thus, we address this critical issue by
using a compact and intuitive Bayesian network-based scheme in this section.
This assists in not only identifying the secure messages that may lead to the
attack but also giving the degree of dependency to measure the occurrence of
a collusion attack.

7.4.1 Motivations

A secure e-commerce system relies on the valid and flawless combination of se-
curity protocols, secure and unobstructed communication channels and trust-
worthy principals [47]. However, it is not easy to guarantee all these factors
due to the increasingly complicated security protocols and hostile environ-
ment [1].

The application of formal analysis for security protocols starts with the
analysis of key distribution protocols for communication between two princi-
pals [112]. For example, A and B want to communicate with each other in
a secure manner. They can reach this goal using a session key, which can be
obtained from a common key server or generated by themselves. Despite the
seeming simplicity of this problem, it is in fact not easy to handle because, in
a hostile environment, the intruders may intercept, alter, or delete messages.
Thus, the previous studies of protocol analysis focus on this topic.
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As mentioned in Section 7.3, networks must defend not only against in-
truders who may impersonate an honest principal or attempt to learn secrets
(external threats), but they must be robust against a group of dishonest prin-
cipals who may collude together to uncover secrets (internal threat). Although
the latter is viewed as a danger, most companies feel reasonably confident that
the internal threat can be controlled through the corporate policies and in-
ternal access control. Thus, they concentrate on the unknown outside user
who may obtain unauthorized access to the corporation’s sensitive assets. Al-
though it is difficult for an individual to break the protection over secrets,
it is feasible to deploy an attack in collusion with a certain number of dis-
honest principals. In this way, he/she can access the unexpected secrets that
exceed his/her legal authority [46]. Unfortunately, this threat has been largely
neglected.

Instead of keys, security association has become a potential way to detect
threats. Section 7.3 mentions the efforts made to ensure the digital data is
secure in the context of collusion. Unfortunately, these measures may be too
expensive and difficult to use. To find collusion attacks, we need a numerical
estimation of the occurrence of the attack, and the ability to capture the
threat correctly .

The main idea in our approach is that a collusion attack usually arises
from attacks on encryption keys and delivered messages. Suppose message
m1 is shared by principal P1 and P2, and message m2 is shared by P3 and
P4. If m1 and m2 are revealed to a hostile intruder, the attack may occur.
Thus, the dependencies can be used to evaluate the occurrence of the attack.
Bayesian networks that have been widely used to represent the probabilistic
relationships among variables and conduct probabilistic inference with them
are eligible to fulfil this role [119]. The transaction databases of principals
provide valuable data to perform Bayesian inference.

We aim to use Bayesian networks to find the dependency model (proba-
bilistic dependence) between secure messages. We measure the collusion attack
by observing the decrease of probability in case of removing the correspond-
ing arcs of the model. This assists in discovering the collusion threat and
enhancing the protocol analysis.

7.4.2 Preliminaries

There are a number of security considerations to guarantee secure transac-
tions. In general, they can be classified into the following three categories:

• the robustness of cryptographic algorithms;
• the security protocols dependent on the cryptographic algorithm; and
• the correct association of specific principals with specific cryptographic

keys.



7.4 Estimation of the Probability of Collusion Attacks 207

The strength of the cryptographic algorithm relies on the complexity of crypt-
analysis with respect to mathematic computation. In this article, we assume
the cryptographic algorithm in e-commerce systems is robust in the usual
sense. Thus, we do not discuss the threats arising from the aspect of crypto-
graphic algorithms.

Although the traditional formal methods for protocol analysis have been
useful in finding subtle threats in the design stage of protocols, they are crit-
icized due to their ideal assumption of honest principals and secure commu-
nication channels. However, in a hostile/uncertain environment, the message
can be missing or tampered with, and the principals can become dishonest.

Another important security issue of e-commerce systems is the correct
association of cryptographic keys with principals. This is usually achieved
using certificates digitally signed by a chain of certification authorities. The
validity of a principal’s public key can be validated by checking the certificate
through a hierarchy of trust described in Chapter 4. Each certificate is linked
to the signature certificate of the entity that digitally signed it. By following
the trust tree to a known trusted party, one can be assured that the certificate
is valid.

Given an electronic transaction including n principals, a principal P i

shares a set of secure messages mij , 1 ≤ i �= j ≤ k, with the principal P j , in
a probability pij . The probability pij denotes the degree to which a message
is shared between principals. For example, suppose the message {m1, m2} is
shared between not only P1 and P2 but also P1 and P3. Thus, the probability
that {m1, m2} is revealed by P1 and P2 is 17% since it can be derived rom
not only P1 and P2, but also P1 and P3. In particular, the pairwise keys are
only shared between the principal and the corresponding authorities. Conse-
quently, they have a low possibility of being divulged, in contrast to general
secure messages such as the principals’ identity.

Unlike general secure messages, the pairwise keys consist of a public key
and a private key. The former can be open to the public but the latter can only
be known by the legitimate principal. Suppose all the principals who know X ’s
public key are called X ’s neighbours. Note that A can have one or more than
one public key in different cases. For brevity, this article assumes that each
principal has only one public key in a transaction. Figure 7.2 presents principal
A’s and B ’s neighbours. Let N (X ) and U (X ) be the set of neighbours of X
and the set of usable pairwise key of X, respectively. Thus, we have N (A) =
{C, D} and N (B) = {E, F}. G is not a neighbour of A because he/she shares
a symmetric key k rather than a pairwise key with A. If A and B share each
other’s secrets, then A and B can communicate with each other’s neighbours.
In the same way, A can communicate with E and F by pretending to be B,
and B can communicate with C and D by pretending to be A. U (A) = {KCA,
KDA} and U (B) = {KEB, KFB} prior to collusion, but U (A) = U (B) =
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Fig. 7.2. An example of principal A’s and B ’s neighbours

{KCA, KDA, KEB, KEB} via collusion. Thus, a certain number of dishonest
principals can obtain unexpected secrets via collusion.

In addition, there may exist potential correlations between secure mes-
sages. For example, an encrypted message has to be decrypted by the com-
bination of the encrypted message and a corresponding pairwise key shared
between the sender and receiver. It is observed that there should be depen-
dencies between the messages shared by principals. Although it is not easy
to confirm precisely the principals who can conduct the attack, it is feasible
to find the probable messages causing the attack and evaluate its occurrence
probability. A Bayesian network is appropriate to perform this role. With
prior knowledge (the probability of divulging of secure messages) from the
transaction databases, we can work out the subjective probability, namely
the likelihood of collusion attack.

7.4.3 Identifying Collusion Attack Using Bayesian Network

Structure. A Bayesian network comprises a set of nodes and a set of di-
rected links. Each node represents a variable from the domain and each link
connects pairs of nodes, representing the direct dependencies between vari-
ables. Usually, the strength of the relationship between variables is quantified
by conditional probability distribution associated with each node. Only the
nodes that take discrete values are considered here. Note, we will consider
only nodes that take discrete values in this article. Thus, a given node (secure
message) represents a proposition, taking the binary values R (revealed by a
certain number of principals) and NR (not revealed by the principals). For
example, in an electronic transaction domain, a node called symmetric key
might represent the proposition that the key is broken.
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There are also direct relationships between principals and cryptographic
keys as well as the dependencies between secure messages. To represent the
described dependencies, we can construct a Bayesian network by creating a
directed acyclic graph (DAG). There are three primary steps to build the
network.

1. Identifying the variables of interest by answering the question of what the
nodes are to represent and what values they can take.

2. Generating the network structure by deciding the parent nodes and child
nodes.

3. Qualifying the relationships between connected nodes by calculating the
conditional probabilities

Suppose a transaction T consists of a set of principals P = {P1, · · · , Pn} and
a collection of secure messages m = {m1, · · · , mk} . Each principal P i has
a set of secure messages M (P i) ⊆ M. For example, ∀ P i ∈ P and P j ∈ P,
we have M (P i) = {m1, m2, m3}, M (P j) = {m1, m2} and M (P i) ∩ M (P j)
= {m1, m2}. It provides the intruder Z an opportunity to know the message
m1 or m2 from P i or P j , whereas the user may not decide exactly who did it.
Thus, we need to cope with uncertainty. In other words, we shall have to deal
with incomplete evidence. As a result, there are two edges from {m1, m2} to
m1 and m2 in the network. The connections represent that m1 and m2 are
the direct cause of {m1, m2}. From the observation, all messages included
in the transaction are viewed as the nodes in the network and they take the
binary values R and NR as mentioned above.

In addition, most messages are transmitted by cipher text to defend them
against malicious attacks. Without exception, if an intruder knows a key and
the encrypted message by the key, he/she can know the plain text of the
message using decryption. For example, suppose M (P i) = {K ij , K il, K ie,
E (m3, K ij)}, M (P j) = {K ij , K jh, K jf , E (m3, K ij)} and M (P i) ∩ M (P j)
= {K ij , E (m3, K ij)}. In order to know m3, the intruder must know K ij and
E (m3, K ij) or obtain m3 from its generator directly. Thus, there are two edges
from {K ij , E (m3, K ij)} to m3 and from the generator to m3. It indicates
that {K ij, E (m3, K ij)} and the generator are the direct cause of m3. Also,
there is an edge from {m3, K ij} to E (m3, K ij). The above dependencies can
be extended to include the other principals and the secure messages included
in the transaction T. In particular, if P i and P j conduct a collusion attack,
the network can become complex because more dependencies will be included
and they can communicate with neighbours of the other side. Finally, we can
construct the whole DAG for the transaction T. This actually answers the
second question. In other words, a node is a parent of a child, if there is an
edge from the former to the latter.

So far, we have presented the identification of variables in the network
and the generation of the network structure. The remaining work is how to
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qualify the dependencies between linked nodes by calculating the conditional
probabilities.

Ascertaining the Probability of Variables. To measure the collusion
attack in an intuitive way, it is necessary to work out the probabilities for
each variable in the obtained DAG. As described above, each variable can take
binary values including R and NR, which are represented by the symbols +
and -, respectively, in the following for the reason of simplicity. The probability
corresponding to each node is a conditional probability, which relies on all its
parent nodes in DAG that connect to this node. We need to look at all the
possible combinations of values of those parent nodes (instantiation of the
parent set). The example below is used to illustrate how to compute the
conditional probabilities of variables in DAG.

For example, there are three principals P1, P2 and P3 in a transaction
T. The set of secure messages of principals are M (P1) = {m1, m2, m3, m4},
M (P2) = {m1, m2}, and M (P3)= {m1, m5, m6}. If an intruder wants to
generate the message (m1, m2), he/she has to know both m1 and m2. Thus,
we can generate a rule m1 ∧ m2 → {m1, m2}, which represents the message
{m1, m2} arises from the combination of m1 and m2. On the other hand, each
variable actually has binary values as mentioned above. The divulgence and
non-divulgence of m1 are denoted by m+

1 and m−
1 , respectively. Consequently,

the formula P(m+
1 , m−

2 ) represents the probability that m1 is divulged but m2

is not. Usually, if an intruder knows the combination of m1 and m2, namely
{m1, m2}, he/she must know every element of this message. In the presence
of a collusion attack, the intruder must have knowledge about all connected
nodes in an alternative network path.

After specifying the topology of the BN, the next step is to qualify the de-
pendencies between linked nodes. As we are only considering discrete variables
at this stage, it has the form of a conditional probability table (CPT). For
example, consider the {m1, m2} node in Figure 7.1. Its parents are m1 and
m2 having the possible joint values {<R, R>, <R, NR>, <NR, R>, <NR,
NR>}. Table 7.1 specifies in order the probability of divulgence of {m1, m2}
for each of these cases to be <0.2, 0.1, 0.1, 0.02>. Thus, the probability of no
divulgence of {m1, m2} is given as one minus the above probabilities in each
case, namely <0.8, 0.9, 0.9, 0.98>.

Table 7.2. A CPT of the node {m1, m2} in Figure 7.1.

m1 m2 P({m1, m2} = R|m1, m2) P({m1, m2} = NR|m1, m2)

R R 0.2 0.8

R NR 0.1 0.9

NR R 0.1 0.9

NR NR 0.02 0.98
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Definition 7.3. Let T be a transaction, P1, · · · and Pn be principals in T and
M(P1), · · · and M(Pn) be the set of messages of P1, · · · and Pn, respectively.
Suppose m1, · · · and mk are the cause (parent nodes) of the node {m1, · · · ,
mk}, mi ∈ M(P1) ∪ · · · ∪ M(Pn). Thus, we have

P ({m1, · · · ,mk}|m1, · · · ,mk) =
P ({m1, · · · ,mk}) ∗ P (m1, · · · ,mk|{m1, · · · ,mk})

P (m1, · · · ,mk)

From the observation, there are three probabilities that need to be calculated.
The probability can be obtained by multiplying the probability of the vari-
ables, namely

∏k
i=1P(mi) since they are independent. P(mi) represents the

probability of the node mi. In the same way, P(mi) can be derived by comput-
ing the conditional probability in terms of its parent nodes. The computation
is repeated until a root node of the alternative network is reached.

The formula (8.4) presents the computation of conditional probabilities in
the usual sense. However, most of the transaction data is encrypted during
transmission. Unlike the general messages, an encrypted message needs an
encryption key when coding and requires a decryption key when decoding.
The difference is that cryptographic keys are required as well as the secure
messages. In particular, the conditional probabilities of the nodes of pairwise
keys are only relevant to the principal’s neighbours. Thus, we have the follow-
ing formulae to calculate the conditional probabilities of nodes of encryption
or decryption, respectively.

P ({m}k|m, k) =
P ({m}k) ∗ P (m, k|{m}k)

P (m, k)
(7.4)

In the formula (7.5), P(m, k) can be obtained by multiplying P(m) by P(k);
P({m}k) represents the probability that the cipher text {m}k is broken; and
P(m, k |{m}k) can be obtained by computing the conditional probability that
the principals who know E (m, k) also know the key k and the message m.
This formula comes from the encryption rule m ∧ k → {m}k.

The decryption is a reverse procedure in contrast to encryption. If an
intruder wants to know the plaintext of an encrypted message m, he/she
must know the correct cryptographic key. Thus, we have

P (m|{m}k, k−1) =
P ({m}k, k−1|m) ∗ P (m)

P ({m}k, k−1)
(7.5)

where k−1 represents the matching secret key of k.
In the formula (8.6), P({m}k, k−1) cannot be derived by simply multi-

plying P({m}k) by P(k) because {m}k and k−1 are not independent. It can
be obtained by computing the probability that the principals who know both
k−1. P({m}k, k−1) represents the conditional probability that the intruder
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who knows m also knows {m}k and k−1. There are two options for the in-
truder to know {m}k and k−1. One is the intruder knows {m}k by obtaining
k and m together, and the other way is the intruder knows {m}k but has no
knowledge about m and k at all.

Consider a BN including n nodes, Y 1 to Y n, taken in that order. A
particular value in the joint probability distribution is represented by P(Y 1

= y1, Y 2 = y2, · · · , Y n = yn), or more compactly, P(y1, y2, · · · , yn). In
addition, the value of any articular node is conditional only on the values of
its parent nodes according to the structure of a BN. Based on the chain rule
of probability theory, we thus have

P (x1, x2, · · · , xn) =
∏

i

P (xi|Parents(xi)) (7.6)

For example, by examining Figure 7.1, we can reduce its joint probability
expressions.

P ({m1,m2}k1 = R ∧ k−1
1 = R ∧ {m1,m2 = R ∧m1 = NR ∧m2 = R})

= P ({m1,m2}k1 = R|k−1
1 = R, {m1,m2 = R)

∗P (m1,m2 = R|m1 = NR,m2 = R)

The above described the computation of conditional probabilities of variables
in the network, in which a secure message transmitted in a transaction T may
be linked by a number of connected nodes in DAG. The derived network can
be used to reason about the domain. It can be conditioned upon any subset of
their variables and supports any direction of reasoning when we observe the
value of some variables. In other words, the measure of collusion attacks can
be transferred to qualify the dependencies between connected nodes.

7.4.4 Experiments

Data Derivation. The experiment uses a simulated data set1 of an electronic
transaction, which consists of a message distributed over a group of principals.
Each principal has a set of secure messages including cryptographic keys. As
mentioned above, a cryptographic key may be a symmetric key or a pairwise
key. A principal X may use one common public key to communicate with
all principals, or use different keys to communicate with different principals.
For simplicity, we assume that X uses only a registered public key in the
transaction. Nevertheless, only the principals who are authorized to use this
public key can communicate with X.

Although the cryptographic algorithms are assumed to be sound, an in-
truder can obtain cryptographic keys in an illegal way. Consequently, if an

1 http://www.deakin.edu.au/∼qifengch/data2.txt
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intruder obtains enough messages in collusion with a certain number of dis-
honest principals, he/she would have ample opportunity to uncover a secret.

It is important to determine the possibility that the messages are obtained.
Table 7.3 presents an instance of the data in, in which k i indicates symmet-
ric keys. The variables take two values, namely known and unknown, which
are replaced by 1 and 0, respectively in the real data set. The format of the
data this system accepts is simple text file, in which each row contains the
data corresponding to a principal. The fields in data rows should be sepa-
rated by tabulators. Each column in the data file includes the discrete value
corresponding to the attribute.

Table 7.3. Messages of principals in a transaction T.

M m1 m2 m3 m4 k1 k2

P1 known known unknown unknown known unknown

P2 known unknown known unknown known known

P3 known known known unknown known known

Analysis. We used B-Course2, a web-based data analysis tool for Bayesian
modelling, to build a dependency model and discover interesting relations out
of the data set. The data set can be uploaded online using the D-trail of
B-Course. The format of the data this system accepts is simple text file, in
which each row contains the data corresponding to each principal. The fields
in data rows should be separated by tabulators.

There are 32 cases in the data file, each of which had 19 variables. B-Course
allows users to control which variables are included in the analysis. k2, k3,
K 1, K 2, K 5, K 6, K 7 and K 8 are excluded since they appear to be irrelevant
to this transaction. Thus, 11 variables are considered to construct the depen-
dency model. We continue to monitor the status of the search, and finally
stop the search when the continuing search does not seem to result in better
result. The most probable model for the data set is shown in the Figure 7.3,
in which the arc (dependency) is measured by observing how much the prob-
ability of the model is changed by removing the arc. If the removed arc makes
the model less probable, it can be viewed as a strong dependency; otherwise a
weak dependency. Below is a list of selected statements describing how remov-
ing an arc affects the probability of the model. The remaining dependencies
can be seen at http://www.deakin.edu.au/∼qifengch/dependence.doc. They
are classified into three categories in terms of strong dependency, weak de-
pendency and very weak dependency by using two heads right arrow, right
arrow and dash right arrow, respectively.

2 http://b-course.cs.helsinki.fi/
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Fig. 7.3. A dependency model of the data set

Table 7.4 shows the dependencies and the ratios of the probability. For exam-
ple, removing any of the strong arcs would result in a model with probability
less than one-millionth of that of the original model and removing any of the
weak arcs from the chosen model would decrease the probability of the model
to less than one-thousandth of the probability of the original model.

Table 7.4. Strength of dependencies.

ID Dependency Ratio of the probability

1 m1 � (m1, m2) 1 : one millionth

2 K 3 → m3 1 : 5965

3 m2 ��� (m1, m2) 1 : 425

4 E ((m1, m2), k1) ��� m2 1 : 306

5 m4 ��� S(m4, K4 ) 1 : 231

6 K 4 ��� m4 1 : 117

7 m1 ��� E ((m1, m2), k1) 1 : 12

8 K 4 ��� S(m4, K 4) 1 : 5.03

Looking at the dependency 1 and dependency 3, the former is a strong arc
in comparison with the latter. Although the dependency 3 is a very weak
arc, it still shows the dependence between m2 and (m1, m2). The very weak
dependency 3 may be due to the altered or missing m2. Thus, the collusion
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attack on the combination of m1 and m2 may happen if m1 and m2 are shared
by multiple principals.

Looking at dependency 4 and the dependency 7, the former shows a de-
pendency from cipher text to plain text, whereas the latter is on the opposite
way. In conjunction with dependency 1 and dependency 3 above, they can
lead to a chained dependency containing cipher text and plain text. This pro-
vides varied ways for the intruder to make collusion attacks from any place
in the chain. For example, the intruder can know E ((m1, m2), k1) by either
obtaining m1, m2 and k1 or obtaining E ((m1, m2), k1) directly.

Looking at dependency 2, this is a weak dependency. It indicates that m3

is dependent on K 3. Thus, if K 3 is known by the intruder, the intruder has
an opportunity to know m3. Nevertheless, the intruder needs to obtain the
cipher text of m3.

Looking at dependency 5, dependency 6 and dependency 8, they are ac-
tually relevant to the encryption and decryption of m4. In the same manner,
they can create a chained dependency starting from m4, via S (m4, K 4) and
K 4, to m4. Any variable in the chain can be used by the intruder to conduct a
collusion attack. For example, the intruder can know m4 either by obtaining
S (m4, K 4) and K 4 or by obtaining m4 directly.

7.5 Summary

As we know, security protocols have played a nontrivial role in guaranteeing
secure e-commerce. Also, the protocols may be subject to subtle flaws due to
incomplete or vague specification. It is necessary to discover these flaws in the
initial design stage of protocols. Thus, traditional formal methods have been
widely used for protocol analysis.

As we have seen in the previous chapters, considerable formal approaches
have been developed to check the correctness and performance of the proto-
cols. Although they have been successfully used to identify some subtle flaws
from the protocols, they have shown their limitations owing to varied and
increasingly complex protocols. On the other hand, they focused on the pro-
tocol analysis in the design stage of protocols, whereas they did not attempt
to evaluate the performance of protocol in a practical situation. New methods
must be developed for discovering hidden but harmful attacks by utilizing the
valuable transaction data from principals.

Collusion attack has been recognized as a key issue in e-commerce sys-
tems and increasingly has featured in the literatures on information security.
Unfortunately, the previous formal methods have largely ignored the hidden
and hazardous attack due to its complexity and the difficulty of measuring
it. Nor did they demonstrate how to model it. We can only find some efforts
to ensure the digital data is secure in the context of collusion. However, they
may still be too expensive and hard to use.
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In this chapter, we have constructed new methods for identifying collusion
attacks and measuring the probability of the attacks. Our approach is a novel
one because

• a novel data-mining based framework is presented to detect collusion at-
tacks in security protocols. Especially, the set of secure messages of each
principal is viewed as a transaction database. Consequently, the detec-
tion of collusion attack can be converted to identify frequent itemsets in
transaction databases and to search for matching rules and facts from the
available knowledge base;

• a novel, compact and intuitive Bayesian network-based scheme rather than
previous key predistribution scheme is proposed to measure the probability
of collusion attack. It assists in identifying the secure messages that have a
high risk of causing the attack, and establishes a dependency model using
a directed acyclic graph (DAG), which provides a numerical estimation of
the dependencies.

To sum up, the experimental results demonstrate that the proposed novel
methods in this chapter are able to assist in identifying collusion attack, cor-
rectly measuring its probability, and especially enhancing and complementing
the existing protocol analysis.
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Conclusion and Future Works

In this book, we have given a brief history and survey of the state of the art
in the field of the formal methods of security protocol analysis and presented
many potential directions in which it could be extended. The history of the
application of formal methods to security protocol analysis spans over twenty
years, dating back to the 1980s. In recent years, these methods have been
showing their maturity and consolidation. A number of specialized or general-
purpose tools have been developed and applied to realistic protocols, in many
cases providing feedbacks to protocol designers that can be used to enhance
the protocol’s security. Nonetheless, we have to acknowledge that some new
challenges, such as new and complex applications of the protocol and new
types of threats, bring forward new requirements to existing protocol analysis.
Any attempts to develop a method to ensure correctness of protocols must
taken them into account. These remain some critical issues that need to be
explored for improving the protocol’s performance.

In this chapter these issues are outlined as emerging trends to be seen
and possible future problems to be solved. In Section 8.1, we give a brief
summary to the previous eight chapters. In Section 8.2, we describe some of
the emerging research areas and challenging problems in protocol analysis.

8.1 Conclusion

We have introduced the application of fundamental formal methods to security
protocol analysis. We start from the traditional protocol analysis, and move
to new and useful methods we have developed for dealing with varied threats
in new applications of security protocols. The key points are:

1. We have provided relevant preliminaries on formal methods of security
protocol analysis in Chapter 1.

2. Fundamental concepts and formalism regarding formal analysis and veri-
fication of security protocols were described in Chapter 2

Q. Chen, C. Zhang, S. Zhang: Secure Transaction Protocol Analysis, LNCS 5111, pp. 217–221, 2008.
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3. Chapter 3 presented a logical framework ENDL, for validating secure
transaction protocols. It has some distinct features in comparison with
traditional techniques, such as fail-negate, dynamics and non-monotonic.
In particular, the timestamp is used for modelling the freshness of mes-
sages.

4. Chapter 4 proposed a verification model based on ENDL especially used
for the analysis of electronic transaction protocols. We can write a precise
definition of the behaviour of a protocol, formulate protocol properties and
examine that they are satisfied via this model. These assist in overcoming
the low efficiency and high rate of error in theorem proving.

5. To deal with inconsistency in secure messages, we proposed a formal
framework to measure intuitively the inconsistency in secure messages in
Chapter 5. It is based on the weighting majority and takes the features of
secure messages into account. We aim to (1) measure the inconsistency in
the messages with weights; and (2) analyse the inconsistent secure mes-
sages by evaluating their reliability. It enables the identification of the
uncertain messages from the secure and insecure messages. Moreover, we
presented a numerical estimation to measure the inconsistent beliefs in se-
cure messages. A probabilistic method is used to measure intuitively the
belief of different principals in terms of a minimum trust that can be put
on the goal of the protocol. We then attempt to merge the inconsistent
beliefs. In addition, we propose a probabilistic semantic in conjunction
with ENDL, and apply the results to the protocol analysis.

6. To identify the potential correlations between secure messages for protocol
analysis, we proposed a framework based on association rule mining in
Chapter 6. This exempts us from predetermining authentication goals.
The first phase is to collect the transaction data from principals. The
second phase is to discover frequent sets of secure messages. The last
phase is to identify association rules by which to evaluate the trust in the
corresponding transaction.

7. In Chapter 7, we proposed new methods for identifying collusion attacks
and measuring the probability of the attacks using a Bayesian network. It
includes (1) identifying collusion attacks by means of matching frequent
itemsets with a known knowledge base; and (2) measuring the collusion at-
tacks using a compact and intuitive Bayesian network-based scheme. This
includes determining structure, ascertaining probability variables and gen-
erating a dependency model.

Most of the methods and techniques in this book are recent work carried out
by authors. In contrast to preexisting formal methods for protocol analysis,
there are five positive aspects to our work.

(1) Effectiveness in analysing electronic transaction protocols. Our
proposed ENDL is effective in verifying not only general security protocols
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but also complex electronic transaction protocols. The new features of the
protocols are taken into account. Furthermore, this logic can be combined
with the inference engine of Prolog to enable model checking of security
protocols, which can be done in a systematic way and usually faster than
theorem proving.

(2) Considering inconsistency in secure messages. The fact that the
message transmitted between principals can be inconsistent due to poten-
tial communication block, message lost and/or malicious attacks is con-
sidered. Resolving the inconsistency in secure messages before protocol
analysis can enhance the reliability of verification results and ensure the
correctness of the protocols.

(3) Merging inconsistent beliefs. The proposed techniques include proba-
bilistic semantics to model less than perfect working conditions and draw
conclusions in such cases. The belief is principals is qualified by combining
assumed belief and observed belief together. The beliefs from the sender,
receiver and the third party are eventually merged.

(4) Mining inconsistent messages for protocol analysis. The missing or
inconsistent values due to a hostile environment are actually interactional.
If the messages in an itemset A were lost or tampered with, this will result
in the decrease of the number of occurrence of the itemset. In other words,
the support and confidence of corresponding rules will decrease as well. In
this regard, the protocol analysis can be transferred to identify frequent
patterns.

(5) Identifying collusion attacks and measuring their probability of
occurrence. To safeguard secure electronic transactions, collusion attacks
conducted by a certain number of dishonest principals must be considered.
The identification of collusion attack and evaluation of its occurrence prob-
ability are integrated into the protocol analysis we have developed. For ex-
ample, to detect collusion attack, we have proposed a framework based on
identifying frequent patterns and matching them with the known knowl-
edge base.

Formal methods for security protocol analysis is a challenging and extensive
field, and this book cannot range over all the issues and all the ongoing work
in this area. Nonetheless, the book provides practical ways of understanding
formal methods for protocol analysis, and applied them to realistic protocols.
Furthermore, it presents some novel ideas to complement and enhance existing
protocol analysis.

8.2 Future Work

Although formal methods of security protocol analysis have shown their suc-
cess and consolidation in the past two decades, we have to acknowledge some
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emerging challenges and trends in this area. With the increasing growth of
transactions dependent on computer networks and security technologies, the
types of applications to which a security protocol can be put become varied
and complex. Moreover, the types of threats become more diverse. These is-
sues are proposed as open problems in this section. We hope this gives us the
opportunity to revisit many of these issues and find new solutions for them in
the near future.

Emerging issues and trends for security protocol analysis are suggested in
the following:

• developing methods to cope with the varied and complex applications to
which security protocols can be put.

• proposing methods to defend against new types of threat.
• developing methods for anonymity protocol analysis.
• considering the composition problem for security protocols: given that two

or more different protocols are executing under the same environment, it
is possible that a message or messages from one protocol could be used to
disturb the goals of the other.

We describe the above issues in more detail here:
Firstly, one of the most apparent trends is the increasingly different envi-

ronments, in which protocols must interoperate and the varied applications to
which a security protocol can be put. Examples may include financial trans-
actions, which depend on novel properties such as liveness and fairness, as
well as traditional security properties like integrity and confidentiality; and
secure group communication, which demands a key to be kept secret within a
group as participants may join or leave. As computer networks become more
widespread, different platforms must interoperate. For example, we may see
protocols such as Internet Key Exchange (IKE) protocol, that must agree
upon both encryption keys and the used cryptographic algorithms, or SET
protocol that must be capable of dealing with various credit card transactions.
To meet these challenging issues, one option is to increase the complexity of
the protocol. As a result, this can make the verification of security protocols
become more difficult. However, it is an unavoidable tendency and will even-
tually have to be met at least part of way, by anybody who is interested in
performing any type of security protocol analysis.

Secondly, most of the previous protocol analysis has focused on attacks in
which there would be clear gain for the attacker, such as fraud or compromise
of secrets. Recently, many other types of attacks are found to be related to
denial of services. This requires commitment of resources, and decision of
how much resources to commit, and when. It is an arduous problem and
successful analysis may rely to some extent on the ability to compare the
resources consumed by an attacker to the resources consumed by a defender.
Current protocol analysis tools have many features that could be applied to
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the problem if adapted appropriately, such as the specification of intermediate
goals as well as ultimate goals. Another threat is traffic analysis. It is possible
for an intruder to learn unhidden sources and destinations of message traffic,
from this alone, even when encryption is used. Although a number of efforts
have been applied to solve this problem, it is not easy to evaluate what amount
and kind of security they provide without the ability to measure and compare
the degree of protection offered by these systems. Statistical analysis can be
used in this case by estimating the statistical information about source and
destination that an opponent could learn by observing or interfering with
message traffic.

Thirdly, in a simple anonymous commutation, a user commits a request
via a single site, which removes the request of identifying data or otherwise
hides its destination, and forwards it to the server. The anonymity is not
obvious in isolation. It would be difficult to disguise the source of a request if
it is the only request in the network. Actually, anonymizing protocols rely on
a mixture of traffic to achieve this goal. Statistical analysis will be useful to
determine how well this strategy performs in different situations. Nonetheless,
it is unrealistic for an attacker to break the protocols without communicating
with other principals. Thus, we should focus on a certain number of principals
who are assumed to share knowledge.

In the end, most work on the application of formal methods for security
protocol analysis has focused on the analysis of protocols that can be de-
scribed according to a single sequence of messages without any option points
or loops. In reality, many security protocols as they are executed can be viewed
as a suite of sub-protocols in conjunction with a collection of option points,
in which the user can choose which sub-protocol to implement. A message
from a protocol could be used in the other protocols. It may be very difficult
to confirm that no protocol in the collection will accept a message from an-
other protocol in the collection. Nonetheless, one realistic way is to reduce the
number of state transitions that had to be examined whenever we had to de-
termine how a message could be produced. On the other hand, two messages
can be confused with each other. In that case, it might be useful to determine
where such confusion is likely to happen.

Although there are still many other interesting problems in the field of
formal methods for protocol analysis, in our point of view, the emerging issues
and trends listed are essential, they require extra attention and need to be
treated carefully.
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